K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại Ha) Chứng minh rằng H làtrung điểm của đoaṇ thẳng BCb) Tính độ dài đoạn thẳng AHc) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ làtrung điểmcủa HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?d) Chứng minh AH là đường trung trực của đoạn thẳng DE .e) Tìm điều kiện của tam giác...
Đọc tiếp

 

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

0
4 tháng 2

a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)

 

Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)

 

Từ (1) và (2) ta có: AD=AH=AE

 

=> AD=AE(đpcm)

 

b) Kẻ I với H ; K với H

 

Theo câu a ta có AD=AE 

 

=>Tam giác ADE cân tại A => góc ADE =góc AED 

 

Vì AD=AH nên =>tam giác ADH cân tại A 

 

=>góc ADH =góc AHD (1)

 

Vì AE=AH nên => tam giác AHE cân tại A 

 

=> góc AHE=góc AEH (2) 

 

Vì K thuộc đường trung trực của HE 

 

=> KE = KH => tam giác KHE cân tại K

 

=> góc KHE =góc KEH (3)

 

Vì I thuộc đường trung trực của HD 

 

=> ID = IH => tam giác IDH cân tại I

 

=> góc IDH =góc IHD (4)

 

Từ (1)và (4) =>góc ADE=AHI

 

Từ (2)và (4) =>góc AED=AHK 

 

Mà ADE=AED(cmt) => AHI=AHK 

 

Vậy suy ra HA là tia p/g của góc IHK

4 tháng 2

a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)

 

Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)

 

Từ (1) và (2) ta có: AD=AH=AE

 

=> AD=AE(đpcm)

 

b) Kẻ I với H ; K với H

 

Theo câu a ta có AD=AE 

 

=>Tam giác ADE cân tại A => góc ADE =góc AED 

 

Vì AD=AH nên =>tam giác ADH cân tại A 

 

=>góc ADH =góc AHD (1)

 

Vì AE=AH nên => tam giác AHE cân tại A 

 

=> góc AHE=góc AEH (2) 

 

Vì K thuộc đường trung trực của HE 

 

=> KE = KH => tam giác KHE cân tại K

 

=> góc KHE =góc KEH (3)

 

Vì I thuộc đường trung trực của HD 

 

=> ID = IH => tam giác IDH cân tại I

 

=> góc IDH =góc IHD (4)

 

Từ (1)và (4) =>góc ADE=AHI

 

Từ (2)và (4) =>góc AED=AHK 

 

Mà ADE=AED(cmt) => AHI=AHK 

 

Vậy suy ra HA là tia p/g của góc IHK

4 tháng 2

a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)

 

Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)

 

Từ (1) và (2) ta có: AD=AH=AE

 

=> AD=AE(đpcm)

 

b) Kẻ I với H ; K với H

 

Theo câu a ta có AD=AE 

 

=>Tam giác ADE cân tại A => góc ADE =góc AED 

 

Vì AD=AH nên =>tam giác ADH cân tại A 

 

=>góc ADH =góc AHD (1)

 

Vì AE=AH nên => tam giác AHE cân tại A 

 

=> góc AHE=góc AEH (2) 

 

Vì K thuộc đường trung trực của HE 

 

=> KE = KH => tam giác KHE cân tại K

 

=> góc KHE =góc KEH (3)

 

Vì I thuộc đường trung trực của HD 

 

=> ID = IH => tam giác IDH cân tại I

 

=> góc IDH =góc IHD (4)

 

Từ (1)và (4) =>góc ADE=AHI

 

Từ (2)và (4) =>góc AED=AHK 

 

Mà ADE=AED(cmt) => AHI=AHK 

 

Vậy suy ra HA là tia p/g của góc IHK

6 tháng 4 2020

Xét hai tam giác vuông ΔABH ΔABH và ΔACH ΔACH:

Ta có: AH cạnh chung

AB=AC

Vậy ΔABH ΔABH = ΔACH ΔACH (c.g.c)

AH là đường cao đồng thời đường trung tuyến của ΔABC ΔABC cân tại A (AB=AC)

Vậy HC= HB hay H là trung điểm BC

2. BH = HC = BC2= 122 = 6BC2 = 122 = 6 cm

Áp dụng định lí Py-ta-go:

AH = √AB2 − HB2= √102 − 62 = 8AH = AB2− HB2 = 102− 62 = 8 cm

3. Ta có: AK là đường cao ΔAEH ΔAEH

Mà KE = KH nên AK cũng là đường trung tuyến ΔAEH ΔAEH 

Vậy ΔAEH ΔAEH cân tại A

Nên AE=AH  (1)

4. Ta có: AI là đường cao ΔADH ΔADH

Mà IH = ID nên AI cũng là đường trung tuyến ΔADH ΔADH 

Vậy ΔAEH ΔAEH cân tại A
Nên AD = AH (2)

Từ (1)(2) Suy ra: AE=AD hay ΔAED ΔAED cân tại A

5. Xét ΔAEF ΔAEF và ΔADF ΔADF:

Ta có: AF cạnh chung

AE=AD

\(\widehat{AEF}\)=\(\widehat{ADF}\) \(\widehat{AEF}\)=\(\widehat{ADF}\)

Vậy ΔAEFΔAEF =ΔADFΔADF (c.g.c)

Nên EF = FD; AF là đường trung tuyến ΔAED ΔAED cân nên đồng thời đường cao nên AF vuông góc ΔAED ΔAED (3)

AF vuông góc BC (4)

Từ (3)(4) Suy ra: DE//BC

6. Để A là trung điểm ED thì ΔABC ΔABC vuông cân tại A

Giả sử ΔABC ΔABC vuông cân tại A nên AH=HB (đường cao đồng thời trung tuyến) IA=IB (đường cao đồng thời trung tuyến)

Tứ giác ADBH có hai đường chéo cắt nhau tại trung điểm mổi đường nên ADBH là hình bình hành

CM tương tự cho tứ giác AECH 

Mà C,H,B thẳng hàng và HC=HB  nên E,A,D thẳng  hàng và  A là trung điểm ED

6 tháng 4 2020

Hình đó nha bn ^^

#hoc_tot#

:>>>