K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

28 tháng 6 2015

\(A=1+\frac{1}{2}+...+\frac{1}{2^{100}}\)

=>\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)=2-\frac{1}{2^{100}}

28 tháng 6 2015

=> \(\frac{1}{2}\)A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)

=> A - \(\frac{1}{2}\) A = \(\frac{1}{2}\)A = \(\frac{1}{2^{101}}-1\)

=> A = \(\frac{\frac{1}{2^{101}}-1}{2}=\frac{\frac{1}{2^{101}}}{2}-\frac{1}{2}=\frac{1}{2^{102}}-\frac{1}{2}

20 tháng 7 2021

Ta có : \(\dfrac{1}{2}< \dfrac{1}{1.2};\dfrac{1}{2^2}< \dfrac{1}{2.3};...;\dfrac{1}{2^{10}}< \dfrac{1}{9.10}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{9}{10}< 1\Rightarrow A< B\)

Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1< 2^{32}\)

\(\Leftrightarrow A< B\)

Ta có:

\(N=\left(1+2\right)\left(2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)

\(\Leftrightarrow N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)

\(\Leftrightarrow N=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)

\(\Leftrightarrow N=\left(2^8-1\right)...\left(2^{2008}+1\right)\)

\(\Leftrightarrow N=2^{4016}-1>2^{2016}=M\)

 

 

2 tháng 9 2021

Ta có:

N=(1+2)(2−1)(22+1)(24+1)...(22008+1)N=(1+2)(2−1)(22+1)(24+1)...(22008+1)

⇔N=(22−1)(22+1)(24+1)...(22008+1)⇔N=(22−1)(22+1)(24+1)...(22008+1)

⇔N=(24−1)(24+1)...(22008+1)⇔N=(24−1)(24+1)...(22008+1)

⇔N=(28−1)...(22008+1)⇔N=(28−1)...(22008+1)

⇔N=24016−1>22016=M

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Lời giải:

$A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}$

$2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2020}}$

$\Rightarrow 2A-A=1-\frac{1}{2^{2021}}$

$\Rightarrow A=1-\frac{1}{2^{2021}}

$B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{60}=\frac{4}{5}=1-\frac{1}{5}$

Hiển nhiên $\frac{1}{2^{2021}}< \frac{1}{5}\Rightarrow 1-\frac{1}{2^{2021}}> 1-\frac{1}{5}$

$\Rightarrow A> B$

Bài 1:

a) \(\dfrac{-17}{36}\) và \(\dfrac{23}{-48}\) 

\(\dfrac{-17}{36}=\dfrac{-17.4}{36.4}=\dfrac{-68}{144}\) 

\(\dfrac{23}{-48}=\dfrac{-23}{48}=\dfrac{-23.3}{144.3}=\dfrac{-69}{144}\) 

Vì \(\dfrac{-68}{144}>\dfrac{-69}{144}\) nên \(\dfrac{-17}{36}>\dfrac{23}{-48}\) 

b) \(\dfrac{-1}{3}\) và \(\dfrac{2}{5}\) 

Vì \(\dfrac{-1}{3}\) là số âm mà \(\dfrac{2}{5}\) là số dương nên \(\dfrac{-1}{3}< \dfrac{2}{5}\) 

c) \(\dfrac{2}{7}\) và \(\dfrac{5}{4}\) 

Vì \(\dfrac{2}{7}< 1\) mà \(\dfrac{5}{4}>1\) nên \(\dfrac{2}{7}< \dfrac{5}{4}\) 

d) \(\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\) 

\(\dfrac{267}{-268}=\dfrac{-267}{268}=\dfrac{-267.449}{268.449}=\dfrac{-119883}{120332}\) 

\(\dfrac{-1347}{1343}=\dfrac{-1347.89}{1343.89}=\dfrac{-119883}{119527}\) 

Vì \(\dfrac{-119883}{120332}>\dfrac{-119883}{119527}\) nên \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)

Bài 2:

\(\dfrac{5}{2}-\left(1\dfrac{3}{7}-0,4\right)=\dfrac{5}{2}-\dfrac{10}{7}-\dfrac{2}{5}=\dfrac{47}{70}\)