so sánh
20202014+1/20202015+1 và 20202015-2/20202016-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
\(A=1+\frac{1}{2}+...+\frac{1}{2^{100}}\)
=>\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)
=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)=2-\frac{1}{2^{100}}
=> \(\frac{1}{2}\)A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
=> A - \(\frac{1}{2}\) A = \(\frac{1}{2}\)A = \(\frac{1}{2^{101}}-1\)
=> A = \(\frac{\frac{1}{2^{101}}-1}{2}=\frac{\frac{1}{2^{101}}}{2}-\frac{1}{2}=\frac{1}{2^{102}}-\frac{1}{2}
Ta có : \(\dfrac{1}{2}< \dfrac{1}{1.2};\dfrac{1}{2^2}< \dfrac{1}{2.3};...;\dfrac{1}{2^{10}}< \dfrac{1}{9.10}\)
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{9}{10}< 1\Rightarrow A< B\)
Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1< 2^{32}\)
\(\Leftrightarrow A< B\)
Ta có:
\(N=\left(1+2\right)\left(2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)
\(\Leftrightarrow N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)
\(\Leftrightarrow N=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)
\(\Leftrightarrow N=\left(2^8-1\right)...\left(2^{2008}+1\right)\)
\(\Leftrightarrow N=2^{4016}-1>2^{2016}=M\)
Lời giải:
$A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}$
$2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2020}}$
$\Rightarrow 2A-A=1-\frac{1}{2^{2021}}$
$\Rightarrow A=1-\frac{1}{2^{2021}}
$B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{60}=\frac{4}{5}=1-\frac{1}{5}$
Hiển nhiên $\frac{1}{2^{2021}}< \frac{1}{5}\Rightarrow 1-\frac{1}{2^{2021}}> 1-\frac{1}{5}$
$\Rightarrow A> B$
Bài 1:
a) \(\dfrac{-17}{36}\) và \(\dfrac{23}{-48}\)
\(\dfrac{-17}{36}=\dfrac{-17.4}{36.4}=\dfrac{-68}{144}\)
\(\dfrac{23}{-48}=\dfrac{-23}{48}=\dfrac{-23.3}{144.3}=\dfrac{-69}{144}\)
Vì \(\dfrac{-68}{144}>\dfrac{-69}{144}\) nên \(\dfrac{-17}{36}>\dfrac{23}{-48}\)
b) \(\dfrac{-1}{3}\) và \(\dfrac{2}{5}\)
Vì \(\dfrac{-1}{3}\) là số âm mà \(\dfrac{2}{5}\) là số dương nên \(\dfrac{-1}{3}< \dfrac{2}{5}\)
c) \(\dfrac{2}{7}\) và \(\dfrac{5}{4}\)
Vì \(\dfrac{2}{7}< 1\) mà \(\dfrac{5}{4}>1\) nên \(\dfrac{2}{7}< \dfrac{5}{4}\)
d) \(\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\)
\(\dfrac{267}{-268}=\dfrac{-267}{268}=\dfrac{-267.449}{268.449}=\dfrac{-119883}{120332}\)
\(\dfrac{-1347}{1343}=\dfrac{-1347.89}{1343.89}=\dfrac{-119883}{119527}\)
Vì \(\dfrac{-119883}{120332}>\dfrac{-119883}{119527}\) nên \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
Bài 2:
\(\dfrac{5}{2}-\left(1\dfrac{3}{7}-0,4\right)=\dfrac{5}{2}-\dfrac{10}{7}-\dfrac{2}{5}=\dfrac{47}{70}\)