Giải PT: \(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 hạng tử đầu , mỗi hạng tử cùng cộng 1
Hạng tử cuối trừ 3
Nhân tử chung : x + 2010
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
\(\Leftrightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\)
\(\Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)
\(\Rightarrow x+2010=0\Leftrightarrow x=-2010\)
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
\(\Leftrightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\frac{x+2010}{6}=0\)
\(\Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)
\(\Rightarrow x+2010=0\Rightarrow x=-2010\)
Để em trình bày dễ hiểu có chú thíck lun cho chụy :)
Ta có :
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
\(\Leftrightarrow\)\(\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\) ( cộng 3 phân số đầu cho 3, trừ phân số cuối cho 3 )
\(\Leftrightarrow\)\(\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\) ( quy đồng )
\(\Leftrightarrow\)\(\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\ne0\) ( vì tổng lớn hơn 0 nên khác 0 )
Nên \(x+2010=0\)
\(\Rightarrow\)\(x=-2010\) ( chuyển vế )
Vậy \(x=-2010\)
Chúc chụy học tốt ~
x + 2 x + 3 x + 4 x + 2028
▬▬▬ + ▬▬▬ + ▬▬▬▬ + ▬▬▬▬▬ = 0
2008 2007 2006 6
<=> 2007.2006.6.x + 2.2007.2006.6 + 2008.2006.6x + 3.2008.2006.6 + 2008.2007.6x + 4.2008.2007.6 + 2008.2007.2006x + 2028.2008.2007.2006 = 0
<=> ( 2007.2006.6 + 2008.2006.6 + 2008.2007.6 + 2008.2007.2006 )x = -( 2.2007.2006.6 + 3.2008.2006.6 + 4.2008.2007.6 + 2028.2008.2007.2006 )
<=> x = -( 2.2007.2006.6 + 3.2008.2006.6 + 4.2008.2007.6 + 2028.2008.2007.2006 ) / ( 2007.2006.6 + 2008.2006.6 + 2008.2007.6 + 2008.2007.2006 ) = -2010
Bài 15:
Ta có: \(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
\(\Leftrightarrow\frac{x+2}{2008}+1+\frac{x+3}{2007}+1+\frac{x+4}{2006}+1+\frac{x+2028}{6}-3=0\)
\(\Leftrightarrow\frac{x+2+2008}{2008}+\frac{x+3+2007}{2007}+\frac{x+4+2006}{2006}+\frac{x+2028-18}{6}=0\)
\(\Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}>0\)
nên x+2010=0
hay x=-2010
Vậy: x=-2010
Bài 17:
Ta có: \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+1+65}{65}+\frac{x+3+63}{63}=\frac{x+5+61}{61}+\frac{x+7+59}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
Vì \(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\)
nên x+66=0
hay x=-66
Vậy: x=-66
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}+\dfrac{x+4}{2006}+\dfrac{x+2028}{6}=0\)
\(\Leftrightarrow\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)+\left(\dfrac{x+4}{2006}+1\right)+\left(\dfrac{x+2028}{6}-3\right)=0\)
\(\Leftrightarrow\)\(\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}+\dfrac{x+2010}{2006}+\dfrac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}=0\right)\)
\(\Leftrightarrow x+2010=0\) vì \(\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}>0\right)\)
=> x=-2010
vậy.....
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\\ \Leftrightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\\ \Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\\ \Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\\ \Leftrightarrow x+2010=0\\ \Leftrightarrow x=-2010\)
Vậy pt có tập nghiệm \(S=\left\{-2010\right\}\)