Tìm GTNN của biểu thức \(y=x^2+\frac{2}{x^3}\) vs x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{x}{2}+\dfrac{18}{x}\ge2\sqrt{\dfrac{18x}{2x}}=6\)
\(y_{min}=6\) khi \(x=6\)
@AZM: Thật không may dấu "=" không xảy ra bạn nhé :))
Ta có:\(S=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Đặt \(a=\frac{x^2+y^2}{xy}\ge\frac{2\sqrt{x^2y^2}}{xy}=2\)
Khi đó:\(S=a+\frac{1}{a}=\left(\frac{a}{4}+\frac{1}{a}\right)+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3\cdot2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra tại x=y
Bài làm:
Ta có: \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{\left(x^2+y^2\right)}{xy}.\frac{xy}{\left(x^2+y^2\right)}}=2.1=2\)
Dấu "=" xảy ra khi: \(x=y\)
Vậy GTNN biểu thức là 2 khi \(x=y\)
Học tốt!!!!
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{1}{2x}+2x\geq 2\)
\(\frac{9}{y}+y\geq 6\)
\( \frac{7}{3}(x+y)\geq \frac{7}{3}.\frac{7}{2}=\frac{49}{6}\)
Cộng theo vế các BĐT trên ta có:
\(P\geq \frac{97}{6} hay P_{\min}=\frac{97}{6} \)
Dấu "=" xảy ra khi
\((x,y)=(\frac{1}{2}, 3)\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y >= 7/2 ta có :
\(A=\frac{13}{3}x+\frac{10}{3}y+\frac{1}{2x}+\frac{9}{y}=\left(2x+\frac{1}{2x}\right)+\left(y+\frac{9}{y}\right)+\frac{7}{3}\left(x+y\right)\)
\(\ge2\sqrt{2x\cdot\frac{1}{2x}}+2\sqrt{y\cdot\frac{9}{y}}+\frac{7}{3}\cdot\frac{7}{2}=2+6+\frac{49}{6}=\frac{97}{6}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x,y>0\\2x=\frac{1}{2x};y=\frac{9}{y}\\x+y=\frac{7}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=3\end{cases}}\)
tìm GTNN của biểu thức P=\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
Áp dụng BĐT AM-GM ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\Rightarrow3\left(\frac{x}{y}+\frac{y}{x}\right)\ge6\)
Cộng theo vế 2 BĐT trên ta có:\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge2-6=-4 \)
\(\Rightarrow P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge-4+5=1\)
Đẳng thức xảy ra khi \(x=y\)
\(y=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)
Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Rightarrow x=\sqrt[5]{3}\)