- tìm gtnn :
5x2 -26x+41
(x-2)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5x^2-26x+41}{\left(x-2\right)^2}=\frac{4\left(x^2-4x+4\right)+\left(x^2-10x+25\right)}{\left(x-2\right)^2}=4+\frac{\left(x-5\right)^2}{\left(x-2\right)^2}\ge4\forall x\)
Dấu "=" xảy ra khi \(x-5=0\Rightarrow x=5\)
Vậy GTNN của A là 4 khi x = 5
a) \(\frac{5x^2-20x+20-6x+21}{\left(x-2\right)^2}=\frac{5\left(x^2-4x+4\right)-6\left(x-2\right)+9}{\left(x-2\right)^2}\)
=\(\frac{5\left(x-2\right)^2-6\left(x-2\right)+9}{\left(x-2\right)^2}=5-\frac{6}{\left(x-2\right)}+\frac{9}{\left(x-2\right)^2}=\left(\frac{3}{x-2}-1\right)^2+4\ge4\)
'=' xảy ra \(\Leftrightarrow\frac{3}{x-2}-1=0\Leftrightarrow x=5\)
Vậy ...
\(A=\left(4x^2-4xy+y^2\right)+\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{21}{4}\\ A=\left(2x-y\right)^2+\left(x+\dfrac{3}{2}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\\ A_{min}=-\dfrac{21}{4}\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-3\end{matrix}\right.\)
\(B=\left[\left(x-1\right)\left(x+2\right)\right]\left[x\left(x+1\right)\right]=\left(x^2+x-2\right)\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)+1-1=\left(x^2+x-1\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow x^2+x-1=0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0\\ \Leftrightarrow\left(x+\dfrac{1-\sqrt{5}}{2}\right)\left(x+\dfrac{1+\sqrt{5}}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)
a)9x2+12+7
Sai đề trầm trọng
b)x2-26x+180
Ta có:x2-26x+180=x2+2.13x+132+11
=(x+13)2+11
Vì (x+13)2\(\ge\)0
Suy ra:(x+13)2+11\(\ge\)11
Dấu = xảy ra khi x+13=0
x=-13
Vậy Min B=11 khi x=-13
a) \(9x^2+12x+7=\left(9x^2+12x+4\right)+3=\left(3x+2\right)^2+3\ge3\)
Min = 3 <=> x = -2/3
b) \(x^2-26x+180=\left(x^2-26x+169\right)+11=\left(x-13\right)^2+11\ge11\)
Min = 11 <=> x = 13
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
B=5x2+4xy-2(x-2y)+2y2+3
=5x2+4xy-2x+4y+2y2+3
=(4x2+4xy+y2)+(x2-2x+1)+(y2+4y+4)-2
=(2x+y)2+(x-1)2+(y+2)2-2 \(\ge\) -2
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)
\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)
Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)
\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)
Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)
\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)
Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)
\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
A=4x2-26x+30
=4x2-6x-20x+30
=(4x2-6x)-(20x-30)
=2x(2x-3)-10(2x-3)
=(2x-3)(2x-10)
......................
mk bk lm đến đây thôi
Chúc bạn học tốt!