Tìm giá trị lớn nhất của biểu thức 1/x^2+2010
GIÚP MK VS NHÁ MỌI NGƯỜI ! :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
f: Ta có: \(x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=2
e: Ta có: \(3x^2-6x+1\)
\(=3\left(x^2-2x+\dfrac{1}{3}\right)\)
\(=3\left(x^2-2x+1-\dfrac{2}{3}\right)\)
\(=3\left(x-1\right)^2-2\ge-2\forall x\)
Dấu '=' xảy ra khi x=1
Bài 1:
a: Ta có: \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\cdot\left[\left(x+3\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)
b: Ta có: \(x^3-3x+2=0\)
\(\Leftrightarrow x^3-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
a, \(M=\left(x-2\right)^2-22\)
Có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)
hay GTNN của M là -22
Dấu "=" xảy ra tại \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTNN của M là -22 tại x=2.
b, \(N=9-|x+3|\)
Có: \(|x+3|\ge0\forall x\)
\(\Rightarrow9-|x+3|\le9\forall x\)
hay GTLN của N là 9
Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTLN của N là 9 tại x = -3.
Điểm SP: 1175415162545444444. Điểm GP: 999999999999999. Tổng: 5555555555777777777767888888888
Vip: 1000
Ý bạn là \(\frac{1}{x^2+2000}hả\)
Ta có :
\(x^2>0\)với mọi x
\(\Rightarrow\frac{1}{x^2}\le1\)với mọi x
\(\Rightarrow\frac{1}{x^2}+2010\le2011\)với mọi x
Vậy giá trị lớn nhất của biểu thức là \(2001\Leftrightarrow x=1\)