Cho a,b,c>0, chứng minh \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\geq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Leftrightarrow \left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{a^2+c^2}-\frac{b}{a+c}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\geq 0\)
\(\Leftrightarrow \frac{ab(a-b)+ac(a-c)}{(b^2+c^2)(b+c)}+\frac{ba(b-a)+bc(b-c)}{(a^2+c^2)(a+c)}+\frac{ca(c-a)+cb(c-b)}{(a^2+b^2)(a+b)}\geq 0\)
\(\Leftrightarrow ab(a-b)\left(\frac{1}{(b^2+c^2)(b+c)}-\frac{1}{(a^2+c^2)(a+c)}\right)+bc(b-c)\left(\frac{1}{(a^2+c^2)(a+c)}-\frac{1}{(a^2+b^2)(a+b)}\right)+ca(c-a)\left(\frac{1}{(a^2+b^2)(a+b)}-\frac{1}{(b^2+c^2)(b+c)}\right)\geq 0\)
\(\Leftrightarrow ab(a-b).\frac{(a-b)(a^2+b^2+c^2+ab+bc+ac)}{(b^2+c^2)(b+c)(a^2+c^2)(a+c)}+bc(b-c).\frac{(b-c)(a^2+b^2+c^2+ab+bc+ac)}{(a^2+c^2)(a+c)(a^2+b^2)(a+b)}+ca(c-a).\frac{(c-a)(a^2+b^2+c^2+ab+bc+ac)}{(a^2+b^2)(a+b)(b^2+c^2)(b+c)}\geq 0\)
\(\Leftrightarrow (a^2+b^2+c^2+ab+bc+ac)\left[\frac{(a-b)^2}{(b^2+c^2)(b+c)(a^2+c^2)(a+c)}+\frac{(b-c)^2}{(a^2+c^2)(a+c)(a^2+b^2)(a+b)}+\frac{(c-a)^2}{(a^2+b^2)(a+b)(b^2+c^2)(b+c)}\right]\geq 0\)
(luôn đúng)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c\ge\frac{a+b+c}{2}+a+b+c\)
\(\Leftrightarrow a\left(\frac{a}{b+c}+1\right)+b\left(\frac{b}{a+c}+1\right)+c\left(\frac{c}{a+b}+1\right)\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow a\left(\frac{a+b+c}{b+c}\right)+b\left(\frac{a+b+c}{c+a}\right)+c\left(\frac{a+b+c}{a+b}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+b+c\right)\frac{a}{b+c}+\left(a+b+c\right)\frac{b}{c+a}+\left(a+b+c\right)\frac{c}{a+b}\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{3}{2}+3\)
\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left(2a+2b+2c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left(b+c+c+a+a+b\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}b+c+c+a+a+b\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\\\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\end{matrix}\right.\)
Nhân từng vế :
\(\Rightarrow\left(b+c+c+a+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right).\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\)
\(\Rightarrow\left(b+c+c+a+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\left(đpcm\right)\)
Vậy với a ,b ,c > 0 thì \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Áp dụng bất đẳng thức cô-si cho các số thực không âm ta có:
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}\times\frac{b+c}{4}}=a\) (1)
\(\frac{b^2}{a+c}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+c}\times\frac{a+c}{4}}=b\) (2)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}\times\frac{a+b}{4}}=c\) (3)
Cộng (1),(2) và (3),vế theo vế ta được:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\) (đpcm)
Dấu "=" xảy ra khi :a=b=c
Vậy \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\) với a,b,c >0
Do vai trò của a,b,c là như nhau nên ta cò thể giả sử: \(a\ge b\ge c>0\)
Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)
CMTT: \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)-ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{-bc\left(b-c\right)-ac\left(a-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\)
Đặt \(A=\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(\Rightarrow A=\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)+ \(\left[\frac{ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ac\left(a-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)+ \(\left[\frac{bc\left(b-c\right)}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{bc\left(b-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)
\(\Rightarrow A=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]^{\left(1\right)}\)+ ...
Do \(a\ge b\ge c>0\Rightarrow\left(1\right)>0.\)
CMTT \(\Rightarrow A>0.\Rightarrowđpcm\)
(Mình làm hơi tắt, mong bạn thông cảm. Cho 1 k nha.)
Tại sao (1) lại >0 hả bạn? Với lại đề mình cho đâu có đk a>=b>=c>0 đâu!
áp dụng dbt cosi cho 2 số:\(\frac{a^3}{b^2}\)va b ta duoc :
\(\frac{a^3}{b^2}\)+a\(\ge\)2\(\sqrt{\frac{a^3}{b^2}.a}\)=2\(\frac{a^2}{b}\)
CMTT:\(\frac{b^3}{c^2}\)+b\(\ge\)2\(\frac{b^2}{c}\)
\(\frac{c^3}{a^2}\)+c\(\ge\)2\(\frac{c^2}{a}\)
\(\Rightarrow\)\(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)+(a+b+c)\(\ge\)2(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\))
\(\Leftrightarrow\)\(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)\(\ge\)2(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)) - (a+b+c) (1)
Ap dụng bdt cosi cho các số dương , ta được:
\(\frac{a^2}{b}\)+\(b\)\(\ge\)2\(\sqrt{\frac{a^2}{b}.b}\)=2a
CMTT: \(\frac{b^2}{c}\)+c\(\ge\)2b
\(\frac{c^2}{a}\)+a\(\ge\)2c
\(\Rightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)+(a+b+c) \(\ge\)2(a+b+c)
\(\Leftrightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)\(\ge\)a+b+c
\(\Leftrightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\) _ (a + b + c ) \(\ge\)0
Do Đó:TỪ (1) ta co : \(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{b^3}{c^2}\)\(\ge\)(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\) )
Xét hiệu hai vế:
BĐT \(\Leftrightarrow\left(\frac{a^3}{b^2}-\frac{a^2b}{b^2}\right)+\left(\frac{b^3}{c^2}-\frac{b^2c}{c^2}\right)+\left(\frac{c^3}{a^2}-\frac{c^2a}{a^2}\right)-\left(a+b+c-b-c-a\right)\ge0\)
\(\Leftrightarrow\left(\frac{a^3}{b^2}-\frac{a^2b}{b^2}\right)+\left(\frac{b^3}{c^2}-\frac{b^2c}{c^2}\right)+\left(\frac{c^3}{a^2}-\frac{c^2a}{a^2}\right)-\left[\left(a-b\right)+\left(b-c\right)+\left(c-a\right)\right]\ge0\)
\(\Leftrightarrow\left(\frac{a^2}{b^2}\left(a-b\right)-\left(a-b\right)\right)+\left(\frac{b^2}{c^2}\left(b-c\right)-\left(b-c\right)\right)+\left(\frac{c^2}{a^2}\left(c-a\right)-\left(c-a\right)\right)\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a-b\right)^2}{b^2}+\frac{\left(b+c\right)\left(b-c\right)^2}{c^2}+\frac{\left(c+a\right)\left(c-a\right)^2}{a^2}\ge0\)
BĐT này đúng với mọi a,b,c > 0 nên ta có Q.E.D
Dấu "=" xảy ra khi a =b =c
P/s: Toán 7 gì mà khó thế nhỉ??Mình cũng không chắc đâu nha!
Áp dụng bất đẳng thức Cauchy-Schwarz: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)
Tương tự: \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng vế với vế:
\(VT+\frac{a+b+c}{2}\ge a+b+c\Rightarrow VT\ge\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)