Chứng tỏ rằng:
a) \(\left(7+7^2+7^3+7^4\right)⋮50\)
b)\(\left(3+3^2+3^3+3^4+3^5+3^6\right)⋮13\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(17+\dfrac{1}{4}-4-\dfrac{3}{16}-13-\dfrac{5}{6}\right)\cdot\left(-\dfrac{4}{7}\right)+\dfrac{27}{4}}{\left(5+\dfrac{2}{7}-5-\dfrac{1}{3}\right):\left(6+\dfrac{2}{3}-4-\dfrac{1}{2}\right)}\)
\(=\dfrac{\dfrac{37}{84}+\dfrac{27}{4}}{-\dfrac{1}{21}:\dfrac{13}{6}}=\dfrac{-1963}{6}\)
a: \(A=\dfrac{9^4}{3^2}=\dfrac{\left(3^2\right)^4}{3^2}=\dfrac{3^8}{3^2}=3^6\)=729
b: \(B=81\left(\dfrac{5}{3}\right)^4=81\cdot\dfrac{5^4}{3^4}=\dfrac{81}{3^4}\cdot5^4=5^4=625\)
c: \(C=\left(\dfrac{4}{7}\right)^{-4}\cdot\left(\dfrac{2}{7}\right)^3\)
\(=\left(\dfrac{7}{4}\right)^4\cdot\left(\dfrac{2}{7}\right)^3\)
\(=\dfrac{7^4}{4^4}\cdot\dfrac{2^3}{7^3}\)
\(=\dfrac{2^3}{4^4}\cdot7\)
\(=\dfrac{2^3}{2^8}\cdot7=\dfrac{7}{2^5}=\dfrac{7}{32}\)
d: \(D=7^{-6}\cdot\left(\dfrac{2}{3}\right)^0\left(\dfrac{7}{5}\right)^6\)
\(=7^{-6}\left(\dfrac{7}{5}\right)^6\)
\(=\dfrac{1}{7^6}\cdot\dfrac{7^6}{5^6}=\dfrac{1}{5^6}=\dfrac{1}{15625}\)
e: \(E=8^3:\left(\dfrac{2}{3}\right)^5\cdot\left(\dfrac{1}{3}\right)^2\)
\(=2^6:\dfrac{2^5}{3^5}\cdot\dfrac{1}{3^2}\)
\(=2^6\cdot\dfrac{3^5}{2^5}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{2^6}{2^5}\cdot\dfrac{3^5}{3^2}=3^3\cdot2=54\)
f: \(F=\left(\dfrac{7}{9}\right)^{-2}\cdot\left(\dfrac{1}{\sqrt{3}}\right)^8\)
\(=\left(\dfrac{9}{7}\right)^2\cdot\left(\dfrac{1}{3}\right)^4\)
\(=\dfrac{9^2}{7^2}\cdot\dfrac{1}{3^4}=\dfrac{9^2}{3^4}\cdot\dfrac{1}{7^2}=\dfrac{81}{81}\cdot\dfrac{1}{49}=\dfrac{1}{49}\)
g: \(G=\left(-\dfrac{4}{5}\right)^{-2}\cdot\left(\dfrac{2}{5}\right)^2\cdot\left(\sqrt{2}\right)^3\)
\(=\left(-\dfrac{5}{4}\right)^2\cdot\left(\dfrac{2}{5}\right)^2\cdot2\sqrt{2}\)
\(=\dfrac{25}{16}\cdot\dfrac{4}{25}\cdot2\sqrt{2}=\dfrac{4}{16}\cdot2\sqrt{2}=\dfrac{8\sqrt{2}}{16}=\dfrac{\sqrt{2}}{2}\)
a: \(=6+\dfrac{4}{5}-1-\dfrac{2}{3}-3-\dfrac{4}{5}\)
\(=2-\dfrac{2}{3}=\dfrac{4}{3}\)
b: \(=7+\dfrac{5}{9}-2-\dfrac{3}{4}-3-\dfrac{5}{9}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
c: =6+7/7-1-3/4-2-5/7
=3+2/7-3/4
=84/28+8/28-21/28
=84/28-13/28
=71/28
\(a,15\dfrac{3}{13}-\left(3\dfrac{4}{7}+8\dfrac{3}{13}\right)=15\dfrac{3}{13}-3\dfrac{4}{7}-8\dfrac{3}{13}=\left(15\dfrac{3}{13}-8\dfrac{3}{13}\right)-\dfrac{25}{7}=7-\dfrac{25}{7}=\dfrac{49}{7}-\dfrac{25}{7}=\dfrac{24}{7}\)
\(b,\left(7\dfrac{4}{9}+4\dfrac{7}{11}\right)-3\dfrac{4}{9}=\left(7\dfrac{4}{9}-3\dfrac{4}{9}\right)+4\dfrac{4}{9}=4+\dfrac{40}{9}=\dfrac{36}{9}+\dfrac{40}{9}=\dfrac{76}{9}\)
\(c,\dfrac{-7}{9}.\dfrac{4}{11}+\dfrac{-7}{9}.\dfrac{7}{11}+5\dfrac{7}{9}=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+\dfrac{52}{9}=\dfrac{-7}{9}.1+\dfrac{52}{9}=\dfrac{-7}{9}+\dfrac{52}{9}=\dfrac{45}{9}=5\)
\(d,50\%.1\dfrac{1}{3}.10.\dfrac{7}{35}.0,75=\dfrac{1}{2}.\dfrac{4}{3}.10.\dfrac{1}{5}.\dfrac{3}{4}=\left(\dfrac{1}{2}.\dfrac{1}{5}.10\right).\left(\dfrac{4}{3}.\dfrac{3}{4}\right)=1.1=1\)
\(e,\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{40.43}=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{40}-\dfrac{1}{43}=1-\dfrac{1}{43}=\dfrac{42}{43}\)
\(b,\Rightarrow\dfrac{x}{2}-\dfrac{3x}{5}-\dfrac{13}{5}=-\dfrac{7}{5}-\dfrac{7x}{10}\\ \Rightarrow\dfrac{1}{2}x-\dfrac{3}{5}x+\dfrac{7}{10}x=\dfrac{6}{5}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{6}{5}\Rightarrow x=2\\ c,\Rightarrow\dfrac{2x-3}{3}-\dfrac{5-3x}{6}=-\dfrac{1}{3}+\dfrac{3}{2}=\dfrac{7}{6}\\ \Rightarrow\dfrac{4x-6-5+3x}{6}=\dfrac{7}{6}\\ \Rightarrow7x-11=7\Rightarrow x=\dfrac{18}{7}\\ d,\Rightarrow\dfrac{2}{3x}+\dfrac{7}{x}=\dfrac{4}{5}+2+\dfrac{3}{12}=\dfrac{61}{20}\\ \Rightarrow\dfrac{23}{3x}=\dfrac{61}{20}\\ \Rightarrow183x=460\\ \Rightarrow x=\dfrac{460}{183}\\ e,\Rightarrow2\left(x-1\right)-\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left(2-x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
e: Ta có: \(\left(x-1\right)^2=2\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
c.\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
\(\frac{\frac{25}{108}.\frac{5751}{25}+\frac{187}{4}}{\frac{100}{21}:-\frac{41}{21}}\)
\(\frac{\frac{213}{4}+\frac{187}{4}}{-\frac{100}{41}}\)
\(\frac{100}{-\frac{100}{41}}=-41\)
a. \(\frac{4}{9}:-\frac{1}{7}+6\frac{5}{9}:-\frac{1}{7}\)
\(\left(\frac{4}{9}+6\frac{5}{9}\right):-\frac{1}{7}\)
\(7:-\frac{1}{7}=-49\)
a: \(=\dfrac{9}{13}\cdot\dfrac{4}{5}=\dfrac{36}{65}\)
b: \(=\dfrac{-7}{10}:\dfrac{3}{2}=\dfrac{-7}{10}\cdot\dfrac{2}{3}=\dfrac{-14}{30}=-\dfrac{7}{15}\)
c: \(=\dfrac{7}{6}\left(3+\dfrac{1}{4}-\dfrac{1}{4}\right)=\dfrac{7}{6}\cdot3=\dfrac{7}{2}\)