Giá trị nhỏ nhất của : I 20092007x+2010I và x4+3x2-4
Giá trị lớn nhất của : I6-2xI-2I4+xI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D = R
y ' = 4 x 3 - 6 x
y’ = 0 ⇔ 2x.(2x2 – 3) = 0 ⇔
+ Xét hàm số trên [0 ; 3] :
+ Xét hàm số trên [2; 5].
y(2) = 6;
y(5) = 552.
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2010\right|+\left|x-2011\right|\ge\left|x-2010+2011-x\right|=1\)
\(\Rightarrow A\ge1\)
Dấu = khi \(\left(x-2010\right)\left(x-2011\right)\ge0\)\(\Leftrightarrow2010\le x\le2011\)
\(\Rightarrow\begin{cases}\left(x-2010\right)\left(x-2011\right)\\2010\le x\le2011\end{cases}\)\(\Rightarrow\begin{cases}x=2010\\x=2011\end{cases}\)
Vậy MinA=1 khi x=2010 hoặc x=2011
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
Đặt
Khi đó hàm số trở thành y= t2- 3t+1 với t≥ 1.
Bảng biến thiên
Suy ra giá trị nhỏ nhất của hàm số:
khi và chỉ khi t= 3/2 hay
Chọn C.