K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2020

\(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=2m\\3x-2y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7x=2m+5\\y=m-2x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{2m+5}{7}\\y=\frac{3m-10}{7}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m+5>0\\3m-10< 0\end{matrix}\right.\) \(\Rightarrow-\frac{5}{2}< m< \frac{10}{3}\)

=>3x+2y=4 và 4x-2y=2m

=>7x=2m+4 và 2x-y=m

=>x=2/7m+4/7 và y=2x-m=4/7m+8/7-m=-3/7m+8/7

x<1; y<1

=>2/7m+4/7<1 và -3/7m+8/7<1

=>2/7m<3/7 và -3/7m<-1/7

=>m<3/2 và m>1/3

14 tháng 5 2022

\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)

Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)

               \(\Leftrightarrow m>-5\) (1)

Để \(y>0\)  \(\Leftrightarrow40-6m< 0\) 

                 \(\Leftrightarrow m>\dfrac{20}{3}\) (2)

\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)

 Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)

 

14 tháng 5 2022

bá cháy cj ơi , 1vote

NV
6 tháng 2 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)

\(\Leftrightarrow m=\pm1\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)

NV
6 tháng 2 2021

d.

Hệ có nghiệm duy nhất khi:

TH1:

 \(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)

TH2:

\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow m=1\) (ktm)

Vậy \(m=1\)

e.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi:

\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

3 tháng 5 2017

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.

3 tháng 5 2017

b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.

NV
17 tháng 4 2021

Kết hợp điều kiện đề bài và pt thứ 2 của hệ ta được:

\(\left\{{}\begin{matrix}x-y=-6\\2x+y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=7\end{matrix}\right.\)

Thế vào pt đầu:

\(m.1+2.7=18\Rightarrow m=4\)

3 tháng 4 2022

lấy (1) + 2.(2) 

sẽ có x = 2m-1 

thay vào (1) sẽ ra y = 2-m 

thay x và y vừa tìm được vào phần thỏa mãn sẽ có 2 nghiệm m = -1 hoặc m = \(\dfrac{3}{2}\) rồi thay vào tìm x và y theo 2 trường hợp 

trường hợp 1: m = -1 

thì ta tìm được x = -3 và y = 3 

trường hợp 2: m= \(\dfrac{3}{2}\)

x = 2 

y = \(\dfrac{1}{2}\)  

( mình chỉ bạn cách làm thôi nên hk có trình bày rõ bạn trình bày lại nhé)

=>2x-4y=8m-10 và 2x+y=3m

=>-5y=5m-10 và 2x+y=3m

=>y=-m+2 và 2x=3m+m-2=4m-2

=>y=-m+2 và x=2m-1

2/x-1/y=-1

=>\(\dfrac{2}{2m-1}+\dfrac{1}{m-2}=-1\)

=>\(\dfrac{2m-4+2m-1}{\left(m-2\right)\left(2m-1\right)}=-1\)

=>-(2m^2-m-4m+2)=4m-5

=>2m^2-5m+2=-4m+5

=>2m^2+m-3=0

=>(2m+3)(m-1)=0

=>m=1 hoặc m=-3/2

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$

$m(5-2y)+y=4$

$\Leftrightarrow y(1-2m)=4-5m$

Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$

Khi đó: $y=\frac{4-5m}{1-2m}$

$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$

$\Leftrightarrow m> \frac{4}{5}(2)$

Từ $(1); (2)\Rightarrow m> \frac{4}{5}$

$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$

$\Leftrightarrow \frac{5m-7}{1-2m}>0$

$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)

$\Leftrightarrow m< \frac{7}{5}$

Vậy $\frac{4}{5}< m< \frac{7}{5}$

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$

$m(5-2y)+y=4$

$\Leftrightarrow y(1-2m)=4-5m$

Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$

Khi đó: $y=\frac{4-5m}{1-2m}$

$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$

$\Leftrightarrow m> \frac{4}{5}(2)$

Từ $(1); (2)\Rightarrow m> \frac{4}{5}$

$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$

$\Leftrightarrow \frac{5m-7}{1-2m}>0$

$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)

$\Leftrightarrow m< \frac{7}{5}$

Vậy $\frac{4}{5}< m< \frac{7}{5}$

NV
14 tháng 1 2021

Đề đúng chứ bạn? Pt này hệ số xấu 1 cách phi lý (đưa về trùng phương 1 ẩn biện luận theo m)