Tìm x,y tự nhiên thỏa mãn:
X²-4x=3y-3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn có thể tham khảo ở đây :
Câu hỏi của tsukino usagi - Toán lớp 6 - Học toán với OnlineMath
Do x=ƯCLN(2y+5;3y+2) nên ta có:
\(\left\{{}\begin{matrix}\left(2y+5\right)⋮x\\\left(3y+2\right)⋮x\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3\left(2y+5\right)⋮x\\2\left(3y+2\right)⋮x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(6y+15\right)⋮x\\\left(6y+4\right)⋮x\end{matrix}\right.\)
\(\Rightarrow\left[\left(6y+15\right)-\left(6y+4\right)\right]⋮x\)
\(\Leftrightarrow11⋮x\Rightarrow x\inƯ\left(11\right)\)\(\Rightarrow...\)
Ta có : \(3y^2+1=4x^2\)
\(\Leftrightarrow3y^2=4x^2-1\)
\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)
Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)
TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )
TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)
Khi đo s: \(2x-1=\left(2k+1\right)^2\)
\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )
\(2xy-3y+3x=7\)
\(\Leftrightarrow4xy-6y +6x=14\)
\(\Leftrightarrow2y\left(2x-3\right)+6x-9=5\)
\(\Leftrightarrow2y\left(2x-3\right)+3\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+3\right)=5\)
Vì \(x,y\in N\)\(\Rightarrow2y+3\ge3\)\(\Rightarrow2y+3\inƯ\left(5\right)=\left\{5\right\}\)
\(\Rightarrow2y+3=5\Leftrightarrow y=1\)
\(\Rightarrow\left(2x-3\right)\left(2+3\right)=5\)
\(\Leftrightarrow2x-3=1\)
\(\Leftrightarrow x=2\)