K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

\(2x+y=1\Leftrightarrow y=1-2x\\ A=2x^2-y^2=2x^2-\left(1-2x\right)^2\\ A=2x^2-1+4x-4x^2=-2x^2+4x-1\\ A=-2\left(x^2-2x+1\right)+1=-2\left(x-1\right)^2+1\le1\\ A_{max}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1-2\cdot1=-1\end{matrix}\right.\)

10 tháng 5 2019

7 tháng 10 2021

trả lời giải thích đầy đủ hộ mình 
mình đang cần gấp:((((

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

NV
12 tháng 11 2021

Chắc đề đúng là số dương, vì ko tồn tại x;y nguyên dương thỏa mãn x+y=1

\(A=\dfrac{y^2}{xy+y}+\dfrac{x^2}{xy+x}\ge\dfrac{\left(x+y\right)^2}{x+y+2xy}\ge\dfrac{\left(x+y\right)^2}{x+y+\dfrac{1}{2}\left(x+y\right)^2}=\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

A=-x^2+2xy-y^2-x^2+4x-4-36

=-(x-y)^2-(x-2)^2-36<=-36

Dấu = xảy ra khi x=y=2

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006