cho f(x)=ax^2+bx+c biết bc^2a^4 > 0. Xác định dấu của f(-1) - f(1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}9a+3b+c>2\\a+b+c< -1\\a-b+c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-a-b-c>1\\a-b+c>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-2a-2b-2c>1\\a-b+c>0\end{matrix}\right.\)
Cộng vế với vế:
\(8a>3\Rightarrow a>\dfrac{3}{8}>0\)
Vậy \(a>0\)
f(-1)=a-b+c
f(3)=9a+3b+c
f(3)-f(-1)=8a+b=4(2a+b)
Mà 2a+b=0 =) f(3)-f(-1)=0
=) f(3)=f(-1) =) f(3).f(-1)=(a-b+c)^2
Mà (a-b+c)^2 >= 0 =) f(-1).f(3)>=0
Ta có : f(x) = ax2 + bx + c
=> f( -1 ) = a - b + c
f(3) = 9a + 3b + c
=> f(3) - f( -1 ) = 8a + 4b = 4 ( 2a + b ) = 4.0 = 0
=> f(3) = f( -1 )
=> f( -1 ). f(3) = f(3). f(3) = [ f(3) ]2 \(\ge\) 0
=> đpcm
Study well ! >_<
Theo de ta co:
f(0) = a.02+b.0+c = c =1
f(1)=a.12+b.1+c = a+b+1 = 2 => a+b = 1
f(2)=a.22+b.2+c = 4a+2b+1=2(2a+b)+1 = 4 => 2(2a+b) = 3 => 2a+b = 3/2 => b = 3/2 - 2a
Thay b=3/2 - 2a vao bieu thuc: a+b=1 ta duoc:
a+3/2-2a = 1
3/2-a= 1
=> a = 3/2 - 1 = 1/2
Suy ra: b = 3/2 - 2.1/2 = 1/2
Vay: a = 1/2 ; b=1/2 ; c=1
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
\(f\left(0\right)=c=8\)
\(f\left(1\right)=a+b+c=a+b+8=9\Rightarrow a+b=1\) (1)
\(f\left(-1\right)=a-b+c=a-b+8=-11\Rightarrow a-b=-19\) (2)
-Từ (1) và (2) suy ra: \(a=-9;b=10\)
f(0)=c=8f(0)=c=8
f(1)=a+b+c=a+b+8=9⇒a+b=1f(1)=a+b+c=a+b+8=9⇒a+b=1 (1)
f(−1)=a−b+c=a−b+8=−11⇒a−b=−19f(−1)=a−b+c=a−b+8=−11⇒a−b=−19 (2)
-Từ (1) và (2) suy ra: a=−9;b=10
Ta có F(0)=c=0
=>c=0
Ta lại có F(1)=a×1^2+b×1+c=2
F(1)=a+b+0=2
F(1)=a+b=2
Ta lại có F(2)=a×2^2+2b+c=2
F(2)=4a+2b+0=2
F(2)=4a+2b=2
F(2)=2a+b=1
F(2)=2a+b-2=1-2=-1
F(2)=2a+b-a-b=-1 (Do a+b=1)
F(2)=a=-1
Thay a=-1 vào a+b=1
Ta có -1+b=1
=>b=2
Vậy a=-1,b=2
f(x)=ax2 + bx+ c
f(0)=1, f(1)=2, f(2)=2
=>c=1;a+b+c=2;4a+2b+c=2
=>a+b=1;4a+2b=1
=>a+b=4a+2b
=>4a+2b-a-b=0
=>3a-b=0