Tìm giá trị lớn nhất của biểu thức M= \(\frac{b}{7-\left(a+b\right)}\) với a,b là các số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét mẫu số 330,6-72:(a-6) Nếu a=6 thì biểu thức này sẽ không xác định hay A không xác định
b,\(\frac{39,48.17+83.39,48}{330,6-72:\left(a-6\right)}=\frac{39480}{3216}\)
\(\Rightarrow\frac{39,48.\left(83+17\right)}{330,6-72:\left(a-6\right)}=\frac{1645}{134}\)
\(\frac{3948}{330,6-72:\left(a-6\right)}=\frac{1645}{134}\)
\(3948.134=1645.\left[330,6-72:\left(a-6\right)\right]\)
\(\Rightarrow330,6-72:\left(a-6\right)=321,6\)
\(72:\left(a-6\right)=9\)
\(a-6=8\)
\(a=14\)
c,Nhỏ nhất khi 330,6-72:(a-6)=1
72:(a-6)=329,6
a-6=45/206
a=1281/206
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Giải
Ta có : x + y \(\ne\)5
Xét x + y \(\le\)4 :
-Nếu y = 0 thì A = 0
-Nếu 1 \(\le\)y \(\le\)3 thì A = \(\frac{y}{5-\left(x+y\right)}\le3\)
-Nếu y = 4 thì x = 0 và A = 4
Xét x + y \(\ge6\)thì A = \(\frac{y}{5-\left(x+y\right)}\le0\)
So sánh các giá trị trên của A ,ta thấy MAX A = 4 và chỉ khi x = 0 ; y = 4 .