3-2x+1/5 > x+3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)
b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)
c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)
d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)
a)2x+2>4
<=> 2x>4-2
<=>2x>2
<=>x>1
Vậy...
b)3x+2>-5
<=>3x>-5-2
<=>3x>-7
<=>x>\(\dfrac{-7}{3}\)
Vậy...
c)10-2x>2
<=>-2x>-10+2
<=>-2x>-8
<=>x<4
Vậy...
d)1-2x<3
<=>-2x<3-1
<=>-2x<2
<=>x>-1
Vậy...
e)10x+3-5\(\le\)14x+12
<=>10x-2\(\le\)14x+12
<=>10x-14x\(\le\)2+12
<=>-4x\(\le\)14
<=>x\(\ge\)\(\dfrac{-7}{2}\)
Vậy...
f)(3x-1)<2x+4
<=> 3x-2x<1+4
<=>x<5
Vậy...
a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)
\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)
\(< =>12-2+4x-2x^2=6x^2-13x+6\)
\(< =>10+4x-2x^2-6x^2+13x-6=0\)
\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)
b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)
\(< =>x-9=0< =>x=9\)
c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)
\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)
d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)
\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)
e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)
\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)
f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)
\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)
g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)
\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)
h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
\(< =>x^2-16-6x+4=x^2-8x+16\)
\(< =>x^2-6x-12-x^2+8x-16=0\)
\(< =>2x-28=0< =>x=\frac{28}{2}=14\)
q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề
1: TH1: x<1
BPT sẽ là 4-3x+1-x>5
=>-4x+5>5
=>-4x>0
=>x<0
TH2: 1<=x<4/3
BPT sẽ là 4-3x+x-1>5
=>-2x+3>5
=>-2x>2
=>x<-1(loại)
TH3: x>=4/3
=>3x-4+x-1>5
=>4x>5+4+1=10
=>x>5/2(nhận)
2: =>|x-1|+|x-2|>3-x
TH1: x<1
Pt sẽ là 1-x+2-x>3-x
=>3-2x>3-x
=>-2x>-x
=>-2x+x>0
=>-x>0
=>x<0(nhận)
TH2: 1<=x<2
Pt sẽ là x-1+2-x>3-x
=>1>3-x
=>-2>-x
=>2<x
=>x>2(loại)
TH3: x>=2
Pt sẽ là x-1+x-2>3-x
=>2x-3>3-x
=>3x>6
=>x>2(nhận)
3: |x+1|+|x-1|<x-3
TH1: x<-1
Pt sẽ là -x-1+1-x<x-3
=>x-3>-2x
=>3x>3
=>x>1(loại)
TH2: -1<=x<1
Pt sẽ là x+1+1-x<x-3
=>x-3>2
=>x>5(loại)
TH3: x>=1
Pt sẽ là x-1+x+1<x-3
=>2x<x-3
=>x<-3(loại)
\(2x+\dfrac{3}{7}>x-\dfrac{5}{4}\)
\(\Leftrightarrow2x-x>\dfrac{-5}{4}-\dfrac{3}{7}\)
\(\Rightarrow x>\dfrac{-47}{28}\)
\(2x+\dfrac{3}{4}>5x-\dfrac{3}{2}+1\)
\(\Leftrightarrow2x+\dfrac{3}{2}>5x-\dfrac{1}{2}\)
\(\Leftrightarrow2x-5x>\dfrac{-1}{2}-\dfrac{3}{4}\)
\(\Leftrightarrow-3x>\dfrac{-5}{4}\)
\(\Leftrightarrow3x< \dfrac{5}{4}\)
\(\Rightarrow x< \dfrac{5}{12}\)
1) x - 8 = 3 - 2(x + 4)
<=> x - 8 = 3 - 2x - 8
<=> x + 2x = -5 + 8
<=> 3x = 3
<=> x = 1
Vậy S = {1}
2) 2(x + 3) - 3(x - 1) = 2
<=> 2x + 6 - 3x + 3 = 2
<=> -x = 2 - 9
<=> -x = -7
<=> x = 7
Vậy S = {7}
3) 4(x - 5) - (3x - 1) = x - 19
<=> 4x - 20 - 3x + 1 = x - 19
<=> x - 19 = x - 19
<=> x - x = -19 + 19
<=> 0x = 0
=> pt luôn đúng với mọi x
4) 7 - (x - 2) = 5(2x - 3)
<=> 7 - x + 2 = 10x + 15
<=> -x - 10x = 15 - 9
<=> -11x = 6
<=> x = -6/11
Vậy S = {-6/11}
\(5,32-4\left(0,5y-5\right)=3y+2\)
\(\Leftrightarrow32-2y+20-3y-2=0\)
\(\Leftrightarrow-5y+50=0\Leftrightarrow y=10\)
\(6,3\left(x-1\right)-x=2x-3\)
\(\Leftrightarrow3x-3-x-2x+3=0\)
\(\Leftrightarrow0=0\) (luôn đúng )
=> pt vô số nghiệm
\(7,2x-4=-12+3x\)
\(\Leftrightarrow-x=-8\Leftrightarrow x=8\)
\(8,x\left(x-1\right)-x\left(x+3\right)=15\)
\(\Leftrightarrow x^2-x-x^2-3x-15=0\)
\(\Leftrightarrow-4x-15=0\Leftrightarrow x=\frac{-15}{4}\)
\(9,x\left(x-1\right)=x\left(x+3\right)\)
\(\Leftrightarrow x^2-x-x^2-3x=0\Leftrightarrow-4x=0\Leftrightarrow x=0\)
\(10,x\left(2x-3\right)+2=x\left(x-5\right)-1\)
\(\Leftrightarrow2x^2-3x+2-x^2+5x+1=0\)
\(\Leftrightarrow x^2+2x+3=0\) (vô lý)
=> pt vô nghiệm
\(11,\left(x-1\right)\left(x+3\right)=-4\)
\(\Leftrightarrow x^2+2x-3+4=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
\(12,\left(x-2\right)\left(x-5\right)=\left(x-3\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+10=x^2-7x+12\)
\(\Leftrightarrow10=12\) (vô lý)=> pt vô nghiệm
a) 2x + 2 > 4
\(\Leftrightarrow\) 2x > 2
\(\Leftrightarrow\) x > 2
Vậy no của bpt là x > 2.
b) 3x + 2 > -5
\(\Leftrightarrow\) 3x > -7
\(\Leftrightarrow\) x < -\(\frac{7}{3}\)
Vậy no của bpt là x < -\(\frac{7}{3}\)
c) 10 - 2x > 2 \(\Leftrightarrow\) -2x > 8 \(\Leftrightarrow\) x < -4. Vậy no của bpt là x < -4 d) 1 - 2x < 3 \(\Leftrightarrow\) -2x < -2 \(\Leftrightarrow\) x > 1 Vậy no của bpt là x > 1 e) 3 - \(\frac{2x}{5}\) > 2 - \(\frac{x}{3}\) \(\Leftrightarrow\) \(\frac{3.15}{15}\)- \(\frac{2x.3}{15}\) > \(\frac{2.15}{15}\) - \(\frac{5.x}{15}\)\(\Leftrightarrow\) 45 - 6x > 30 - 5x
\(\Leftrightarrow\) -6x + 5x > 30 - 45
\(\Leftrightarrow\) -x > -15
\(\Leftrightarrow\) x < 15
Vậy no của bpt là x < 15
a: =>(x+1)(2x-3)<0
=>-1<x<3/2
b:=>(x-3)(x-6)>0
=>x>6 hoặc x<3
c: =>(x+2)(x-5)<0
=>-2<x<5