K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2020

\(\left\{{}\begin{matrix}b^2-4\left(c-2\right)=0\\-\frac{b}{2}\ge2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b^2=4c-8\\b\le-4\end{matrix}\right.\) \(\Rightarrow4c-8\ge16\Rightarrow c\ge6\)

\(B=c^2+b^2=c^2+4c-8=\left(c-6\right)\left(c+10\right)+52\ge52\)

\(B_{min}=52\) khi \(\left\{{}\begin{matrix}b=-4\\c=6\end{matrix}\right.\)

9 tháng 2 2022

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

9 tháng 2 2022

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)

11 tháng 6 2021

a=1,b=-4,c=m-1

Ta có : △ = b\(^2\)-4ac =16-4(m-2)=16-4m+8

Để PT(1) có nghiệm kép thì △=0 <=> 16-4m+8=0<=> 4m=24<=>m=6

Với m=6 PT(1) <=> x\(^2\)-4x+6-2=0<=>x\(^2\)-4x+4=0

Lại Có m=6 thì pt có nghiệm kép => x\(_1\)=x\(_2\)=-\(\dfrac{b}{2a}\)=2

Vậy Với m=6 thì pt 1 có nghiệm kép x=1

b) Theo hệ thức Vi-et 

Ta có: x\(_1\)+x\(_2\)=\(\dfrac{-b}{a}\)=4 và x\(_1\).x\(_2\)=\(\dfrac{c}{a}\)=m-2

x1\(^2\)+x2\(^2\)=9

<=> (x\(_1\)+x\(_2\))\(^2\)-2x\(_1\).x\(_2\)=9

<=>16-2m+4=9

<=>2m=1

<=> m=\(\dfrac{1}{2}\)

Vậy m =\(\dfrac{1}{2}\) thì pt(1) có 2 nghiệm thõa mãn x\(_1\)\(^2\)+ x\(_2\)\(^2\)=9

12 tháng 6 2021

câu b) m phải =\(\dfrac{11}{2}\) chứ ạ

NV
18 tháng 3 2021

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(P=x_1x_2-\left(x_1^2+x_2^2\right)=3x_1x_2-\left(x_1+x_2\right)^2\)

\(P=3\left(m-2\right)-m^2=-m^2+3m-6=-\left(m-\dfrac{3}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)

\(P_{max}=-\dfrac{15}{4}\) khi \(m=\dfrac{3}{2}\)

\(P_{min}\) ko tồn tại

Bạn ghi sai đề?

27 tháng 3 2021

\(Δ=(-m)^2-4.1.(m-2)\\=m^2-4m+8\\=m^2-4m+4+4\\=(m-2)^2+4\)

\(\to\) Pt luôn có 2 nghiệm phân biệt

Theo Viét

\(\begin{cases}x_1+x_2=m\\x_1x_2=m-2\end{cases}\)

\(x_1x_2-x_1^2-x_2^2\\=3x_1x_2-(x_1^2+2x_1x_2+x_2^2)\\=3x_1x_2-(x_1+x_2)^2\\=3(m-2)-m^2\\=-m^2+3m-6\\=-\bigg(m^2-2.\dfrac{3}{2}.m+\dfrac{9}{4}+\dfrac{15}{4}\bigg)\\=-\bigg(m-\dfrac{3}{2}\bigg)^2-\dfrac{15}{4}\le -\dfrac{15}{4}\\\to \max P=-\dfrac{15}{4}\leftrightarrow m-\dfrac{3}{2}=0\\\leftrightarrow m=\dfrac{3}{2}\)

Vậy \(\max P=-\dfrac{15}{4}\)

a: \(\Leftrightarrow\left(2m+4\right)^2-4m\cdot9=0\)

\(\Leftrightarrow4m^2+16m+16-36m=0\)

\(\Leftrightarrow m^2-5m+4=0\)

\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\)

hay \(m\in\left\{1;4\right\}\)

b: \(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2+m+3\right)=0\)

\(\Leftrightarrow4m^2-32m+64-4m^2-4m-12=0\)

=>-36m+52=0

=>-36m=-52

hay m=13/9

d: \(\Leftrightarrow m^2-4m\left(m+3\right)=0\)

\(\Leftrightarrow m\left(m-4m-12\right)=0\)

=>m(-3m-12)=0

=>m=0 hoặc m=-4

a) PT có nghiệm kép khi △=0

\(\Leftrightarrow\left[2\left(m+2\right)\right]^2-4.m.9=0\)

\(\Leftrightarrow4\left(m^2+4m+4\right)-36m=0\)

\(\Leftrightarrow4m^2-20m+16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)

Khi đó nghiệm kép của pt là \(x_1=x_2=\dfrac{-2\left(m+2\right)}{2.m}=\dfrac{-2m-4}{2m}=-1-\dfrac{2}{m}\)

+Khi m=4 thì \(x_1=x_2=-1-\dfrac{2}{4}=-\dfrac{3}{2}\)

+Khi m=1 thì \(x_1=x_2=-1-\dfrac{2}{1}=-3\)

NV
12 tháng 11 2021

Em tham khảo ở đây:

xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24

12 tháng 11 2021

vậy không có tìm GTLN hay sao ạ?