Cho x,y,z >0. Chứng minh \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\) ≥ x2 + y2 + z2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
Dấu "=" xảy ra <=> \(x=y=z=1\)
Vậy ............
Ta có A=\(\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{z}}+\frac{z^2}{z\sqrt{x}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y}+y\sqrt{z}+z\sqrt{x}}\)
Áp dụng BĐt bu-nhi-a, ta có
\(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\le\sqrt{\left(x+y+z\right)\left(xy+yz+zx\right)}\le\sqrt{\frac{1}{3}\left(x+y+z\right)^2\left(x+y+z\right)}\)
\(\Rightarrow A\ge\sqrt{\frac{x+y+z}{\frac{1}{3}}}=\sqrt{3\left(x+y+z\right)}\ge\sqrt{9}=3\)
=> A>=3 (ĐPCM)
Dấu = xảy ra <=> x=y=z=1
^^
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{x+z}+1\right)+\left(\frac{z}{x+y}+1\right)-3\)
\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}-3=\left(x+y+z\right).\left(\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{x+y}\right)-3\)
\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(x+z\right)\right]\left(\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{x+y}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\left(đpcm\right)\)
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)
Áp dụng Cô-Si cho các số không âm:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2;\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2;\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)
Cộng theo vế các bất đẳng thức ta được: \(\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\ge2+2+2=6\)
Xem lại đề...............
Dễ dàng chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)
Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(x+y\ge2\sqrt{xy}\)(3)
Chứng mih tương tự, ta được;
\(y+z\ge2\sqrt{yz}\)(4);
\(z+x\ge2\sqrt{zx}\)(5)
Từ (3), (4), (5), ta được:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)
Mà theo đề bài, \(x+y+z\ge3\) nên:
\(\frac{x+y+z}{2}\ge\frac{3}{2}\)
Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)
Từ (2) và (6), ta được:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Ta có:
\(x^4+y^4\ge x^3y+xy^3\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x^3+y^3\right)\left(x+y\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
Σ\(\frac{x^4+y^4}{x^3+y^3}\)\(\ge x+y+z=2008\)
Áp dùng BĐT Cosi ta có:
\(\frac{x^3}{yz}+y+z\ge3\sqrt[3]{\frac{x^3}{yz}\cdot y\cdot z}=3x\)
\(\frac{y^3}{xz}+z+x\ge3\sqrt[3]{\frac{z^3}{zx}\cdot z\cdot x}=3y\)
\(\frac{z^3}{yx}+x+y\ge3\sqrt[3]{\frac{z^3}{xy}\cdot x\cdot y}=3z\)
\(\Rightarrow\frac{x^3}{xy}+y+z+\frac{y^3}{zx}+x+z+\frac{z^3}{xy}+x+y\ge3x+3y+3z\)
\(\Rightarrow\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\ge3\left(x+y+z\right)-2\left(x+y+z\right)\)\(=x+y+z\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^3}{yz}=y=z\\\frac{y^3}{zx}=x=z\\\frac{z^3}{yz}=y=x\end{cases}\Rightarrow x=y=z}\)
\(VT=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\)
Dấu "=" xảy ra khi \(x=y=z\)