Giúp mình với ạ mik cần gấp lắm ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 were - would you play
2 weren't studying - would have
3 had taken - wouldn't have got
4 would you go - could
5 will you give - is
6 recycle - won't be
7 had heard - wouldn't have gone
8 would you buy - had
9 don't hurry - will miss
10 had phoned - would have given
11 were - wouldn't eat
12 will go - rains
13 had known - would have sent
14 won't feel - swims
15 hadn't freezed - would have gone
1 had stayed
2 were
3 arrive
4 would have bought
5 would go
6 comes
7 had thought
8 gets
9 will become
10 had known
11 hurries
12 would change
13 would have trusted
14 doesn't study
15 weren't
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Lời giải:
Đặt \(\sqrt[3]{5\sqrt{2}+7}=m; \sqrt[3]{5\sqrt{2}-7}=n\)
\(m^3-n^3=14\)
\(mn=1\)
\((a+b+c)^3=(m-n)^3=m^3-3mn(m-n)-n^3=14-3(m-n)\)
\(\Leftrightarrow (a+b+c)^3=14-3(a+b+c)\)
\(\Leftrightarrow (a+b+c)^3+3(a+b+c)-14=0\)
\(\Leftrightarrow (a+b+c)^2[(a+b+c)-2]+2(a+b+c)(a+b+c-2)+7(a+b+c-2)=0\)
\(\Leftrightarrow (a+b+c-2)[(a+b+c)^2+2(a+b+c)+7]=0\)
Dễ thấy biểu thức trong ngoặc vuông $>0$ nên $a+b+c-2=0$
$\Leftrightarrow a+b+c=2$
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-1}{2}=\frac{3}{2}$