Cho a + b + c = 3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: P = a4 +b4 +c4 -3abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/
Bạn có thể tham khảo ở đây nha.
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Lời giải:
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[(a+b+c)^2-2(ab+bc+ac)]^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$
$=[1^2-2(-1)]^2-2[(-1)^2-2(-1).1]=3$
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
a+b+c=0
⇔⇔(a+b+c)2=0
⇔⇔a2+b2+c2+2ab+2bc+2ca=0 mà a2+b2+c2=2
⇒⇒2ab+2bc+2ca=-2
⇔⇔(2ab+2bc+2c)2=4
⇔⇔4a2b2+4c2b2+4a2c2+8abc(a+b+c)=4 mà a+b+c=0
⇒⇒4a2b2+4c2b2+4a2c2=4 (1)
⇔⇔2a2b2+2c2b2+2a2c2=2
Mặt khác:
a2+b2+c2=2 ⇒⇒(a2+b2+c2)2=4
⇔⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=4 (2)
Từ (1) và (2) ⇒⇒4a2b2+4c2b2+4a2c2=a4+b4+c4+2(a2b2+b2c2+c2a2)
⇔⇔2a2b2+2c2b2+2a2c2=a4+b4+c4
⇒⇒a4+b4+c4=2 (vì 2a2b2+2c2b2+2a2c2=2)