n - 3 là bội của n2 + 4
Làm nhanh lên nhé!Mình đang cần gấp. Ai làm nhanh nhất và đúng nhất mình sẽ tick cho người ấy.THANK YOU!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 3n+10 chia hết cho n-1
=>3n-3+13 chia hết cho n-1
mà 3n-3 chia hết cho n-1
=>13 chia hết cho n-1
ta có bảng sau:
n-1 | 1 | 13 | -1 | -13 | |
n | 2 | 14 | 0 | -12 |
=>n=(2;14;0;-12)
Goi a là số bị trừ, b là sô trừ
a - b = 50,16 => b = a - 50,16
4 x b - a = 5,94
4 x (a - 50,16) - a = 5.94
4 x a - a - 200,64 = 5.94
3 x a = 5,94 + 200,64 = 206,58
a = 206,58 : 3 = 68,86
Số bị trù là 68,86
Bài giải
Ta có: 3n - 5 \(⋮\)n + 1
=> 3(n + 1) - 8 \(⋮\)n + 1
Vì 3(n + 1) - 8 \(⋮\)n + 1 và 3(n + 1) \(⋮\)n + 1
Nên 8 \(⋮\)n + 1
Tự làm tiếp nha ...
Ta có: 4n + 3 \(⋮\)n - 1
=> 4(n - 1) + 7 \(⋮\)n - 1
Vì 4(n - 1) + 7 \(⋮\)n - 1 và 4(n - 1) \(⋮\)n - 1
Nên 7 \(⋮\)n - 1
.................
a)Để (n+3) chia hết cho (n+3) thì n={0:1:2:3:4:5:6:7:8:9}
b)(2n+5)\(⋮n+2\)
2(n+2)+1 chia hết cho (n+2)
Do 2(n+2)+1 chia hết cho n+2 nên 1 chia hết cho n+2
n+2=Ư(1)={1}
Lập bảng:
n+2 | 1 |
n | loại |
Vậy n=\(\varnothing\)
\(2S=3^{31}-1=3^{28}.3^3-1=\left(...1\right).27-1=\left(.....7\right)-1=\left(...6\right)\)
\(\Rightarrow S=\left(...3\right)\)
Tận cùng bằng 3 nhé e
3^0 có tận cùng là 1.
3^1 có tận cùng là 3.
3^2 có tận cùng là 9.
3^3 có tận cùng là 7.
3^4 có tận cùng là 1.
................................
3S = ( 3^1+3^2+3^3+......+3^31 )
3S-S = ( 3^1+3^2+3^3+......+3^31 ) - ( 3^0+3^1+3^2+......+3^30 )
2S = 2^31-1
2^31 có tận cùng là 1. ( theo như công thức đã nêu trên )
=> 2S có tận cùng là 0.
2S-S = 2S : 2
=> S có tận cùng là 5 vì ....0 : 2 bằng 5.
Khi đứng trước bức tranh anh trai tôi của Kiều Phương.............
Bạn tra bài trên google rồi ấn vào trang lời giải hay nhé!
mk đag bận nên k viết ra đc
mong bạn k cho mk
##THANKS NHÌU NHÌU##
*Vẽ các trung tuyến BN, CE lần lượt tại B và C. Gọi G là trọng tâm của \(\Delta ABC\)..Nối MN
Áp dụng BĐT tam giác vào \(\Delta AMN\), ta được:
\(AM< AN+NM\)(1)
Mà \(AN=\frac{1}{2}AC\)(Do BN là trung tuyến ứng với cạnh AC) (2)
và \(MN=\frac{1}{2}AB\)(Do MN là đường trung bình ứng với cạnh \(AB\)của \(\Delta ABC\)) (3)
Từ (1), (2) và (3) suy ra \(AM< \frac{1}{2}AB+\frac{1}{2}AC\)
hay \(AM< \frac{1}{2}\left(AB+AC\right)\) (đpcm)