K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

sẽ chọn câu này chứ?olm-logo.png

21 tháng 6 2016

ngu nặng

3 tháng 6 2016

a, A+B thuộc Z+ vậy A>B => |A| > |B|

b, A+B thuộc Z- vậy |A| < |B|

2 tháng 6 2015

Z+: tập hợp số nguyên dương

Z-: tập hợp số nguyên âm

cái này đầu tiên mình thấy đó

30 tháng 10 2015

a thuộc số nguyên dương, b thuộc số nguyên âm 

a) mà a+b ko thuộc z suy ra 

15 tháng 9 2017

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

11 tháng 7 2019

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Lời giải:

Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$

$\Rightarrow {a}{b}>\frac{a+n}{b+n}$

Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$

$\Rightarrow {a}{b}=\frac{a+n}{b+n}$

Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$

$\Rightarrow {a}{b}<\frac{a+n}{b+n}$

 

21 tháng 6 2015

theo minh thi

neu a<b thi ta co a(b+n) va b(a+n)

       ab+an và ab + bn

vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n

neu a>b thi ta co a(b+n) va b(a+n)

      ab+an va ab+bn

vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n

neu a=b thi a(b+n) và b(a+n)

       ab+an và ab+ bn

vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n

19 tháng 6 2015

a bé hơn b

a+n<b+n
 

 

28 tháng 8 2018

Số đối của x là :

- x =  b - a

3 tháng 8 2023

giả sử \(\text{x ∈ B, x = 6m + 4, m ∈ Z}\) .  Khi đó ta có thể viết \(\text{ x = 3(2m + 1) + 1}\)

Đặt \(\text{k = 2m + 1}\) thì thay \(\text{ k ∈ Z}\) vào ta có \(\text{x = 3k + 1}\Rightarrow\text{x ∈ A}\)

Như vậy \(\text{x ∈ B ⇒ x ∈ A}\)

Hay \(\text{B ⊂ A}\)