K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Hình bn tự vẽ nha :))

a) Xét \(\Delta\)ABM và \(\Delta\)ACM, có:   \(\widehat{BAM}=\widehat{CAM};AMchung;\widehat{M=90^o}\) 

=> \(\Delta ABM=\Delta ACM\)(gcg)

=> \(\widehat{ABC}=\widehat{ACB}\)(2g.t.ư); AB=AC ( 2c. t.ư)

b) *Xét \(\Delta\)ABD và \(\Delta\)ACE, có: \(\widehat{ABD}=\widehat{ACE}\)(do  \(\widehat{ABC}=\widehat{ACB}\)); \(AB=AC\)(cmt); \(\widehat{BAD}=\widehat{CAE}\)(gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)(gcg)

* Ta có: \(\widehat{CAD}=\widehat{EAD}-\widehat{CAE};\widehat{BAE}=\widehat{EAD}-\widehat{BAD}\)

Mà \(\widehat{BAD}=\widehat{CAE}\)(gt)    => \(\widehat{CAD}=\widehat{BAE}\)

Xét \(\Delta\)ACD và \(\Delta\)ABE, có: \(\widehat{CAD}=\widehat{BAE}\)(cmt); \(AB=AC\)(cmt); \(\widehat{ACD}=\widehat{ABE}\)

\(\Rightarrow\Delta ACD=\Delta ABE\)(gcg)

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

b: ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

=>\(\widehat{ADB}=\widehat{AEC}\)

=>\(\widehat{ADC}=\widehat{AEB}\)

a: XétΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

mà AD là tia phân giác

nên AD là đường cao

b: Xét ΔABE và ΔACF có 

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)

BE=CF

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

10 tháng 12 2016

Hình bạn tự vẽ nhé leuleu

a) Xét ΔABM và ΔACM có:

AB=AC (gt)

AM là cạnh chung

BM=CN (M là trung điểm của BC)

=> ΔABM=ΔACM (c-c-c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)

=> \(\widehat{AMB}+\widehat{AMB}=180^o\)

=> \(\widehat{AMB}=90^o\)

=> AM vuông góc với BC

b) Theo câu a ta có: ΔABM=ΔACMB

=> \(\widehat{ABM}=\widehat{ACM}\)

Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)

Xét ΔABD và ΔACE có:

AB=AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)

BD=CE (gt)

=> ΔABD=ΔACE (c-g-c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

Cũng theo câu a thì ΔABM=ΔACM

=> \(\widehat{BAM}=\widehat{CAM}\)

=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)

=> \(\widehat{DAM}=\widehat{EAM}\)

=> AM là tia phân giác của góc DAE

11 tháng 12 2016

ohook

2 tháng 3 2020

a, xét tam giác AMB và tam giác AMC có : AM chung

BM = CM do M là trung điểm của BC (gt)

AB = AC (gt)

=> tam giác AMB = tam giác AMC (c-c-c)

=> góc AMB = góc AMC (đn)

mà góc AMB + góc AMC = 180 (kb)

=> góc AMB = 90

=> AM _|_ BC (đn)

b, góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc ABC + góc ABD = 180 (kb)

góc ACB + góc ACE = 180 (kb)

=> góc ABD = góc ACE 

xét tam giác ABD và tam giác ACE có : BD = CE (gt)

AB = AC (gt)

=> tam giác ABD = tam giác ACE (c-g-c)

2 tháng 3 2020

còn c với d bạn

10 tháng 3 2021

a) Do ΔABC cân tại A

=> AB = AC; góc ABC=góc ACB

Lại có: góc ABC+ góc ABD = 180o (kề bù)

góc ACB + góc ACE = 180o (kề bù)

=> góc ABD = góc ACE

Xét ΔADB và ΔAEC có:

góc BAD = góc CAE (gt)

AB = AC (cmt)

góc ABD = góc ACE (cmt)

=> ΔADB = ΔAEC (g.c.g)

=> BD = CE (2 cạnh tg ứng) đpcm

b) Vì ΔADB = ΔAEC (câu a)

=> góc ADB = góc AEC (2 góc t/ư)

hay góc HDB = góc KEC

Xét ΔBHD vuông tại H và ΔCKE vuông tại E có:

BD = CE (câu a)

góc HDB = góc KEC(cmt)

=> ΔBHD = ΔCKE (ch - gn)

=> BH = CK (2 cạnh tg ứng) (đpcm)

25 tháng 12 2016

.

25 tháng 12 2016

.