K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)(*)
Đặt \(y^2+3y+\frac{3}{2}=a\)
khi đó : (*) \(x^2=\left(a-\frac{3}{2}\right)\left(a+\frac{3}{2}\right)=a^2-\frac{9}{4}\Leftrightarrow\left(4x-4a\right)\left(x+a\right)=-9\)
Lập bảng là ok nhé 
 

ta có:

\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)

\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)

<=>x=0=>2y=1=>y=0

Vậy nghiệm của pt:(x;y)=(0;0)

2 tháng 4 2018

Dễ mà :v

PT <=> 2x2 + 2y2 + 2xy - 2x + 2y = 0

     <=> (x - 1)2 + (y + 1)2 + (x + y)2 = 0

=> x = 1; y = -1.

23 tháng 11 2020

\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))

TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)

TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)

TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Lời giải:
PT $\Leftrightarrow (x^2+1-x)(x^2+1+x)=y^2$

Gọi $d$ là ƯCLN của $x^2+1-x, x^2+1+x$.

$\Rightarrow (x^2+1+x)-(x^2+1-x)\vdots d\Leftrightarrow 2x\vdots d$

Dễ thấy $x^2+1-x=x(x-1)+1$ lẻ nên $d$ lẻ.

$\Rightarrow x\vdots d$

Kết hợp với $x^2+x+1\vdots d$ suy ra $1\vdots d\Rightarrow d=1$

Vậy $x^2+1-x, x^2+1+x$ nguyên tố cùng nhau 

Do đó để tích của 2 số này là scp thì $x^2+1-x=a^2, x^2+1+x=b^2$ với $a,b$ là các số tự nhiên.

$x^2+1-x=a^2$
$4x^2-4x+4=4a^2$
$(2x-1)^2+3=(2a)^2$

$3=(2a)^2-(2x-1)^2=(2a-2x+1)(2a+2x-1)$

Xét các TH $(2a-2x+1,2a+2x-1)=(1,3),(3,1),(-1,-3),(-3,-1)$ ta thu được $x=0$ hoặc $x=1$

Nếu $x=1$ thì $y^2=3$ (loại)

Nếu $x=0$ thì $y^2=1\Rightarrow y=\pm 1$

Vậy $(x,y)=(0,\pm 1)$

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Bạn lưu ý lần sau gõ đề bằng công thức toán (bộ gõ nằm trong biểu tượng $\sum$ trái khung soạn thảo)