\(\left|a-b\right|\le\left|a\right|+\left|b\right|\). Dấu đẳng thức xảy ra khi nào. giải thích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|a+b\right|\le\left|a\right|+\left|b\right|\) \(\left(1\right)\)
\(\Leftrightarrow\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\le a^2+2\left|ab\right|+b^2\)
\(\Leftrightarrow ab\le\left|ab\right|\) \(\left(2\right)\)
Bất đẳng thức \(\left(2\right)\) đúng \(\Rightarrow\) bất đẳng thức \(\left(1\right)\) đúng
Dấu ''='' xảy ra \(\Leftrightarrow ab=0\)
\(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\Leftrightarrow\left|ab+cd\right|^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
Áp dụng bất đẳng thức bunhiacopxki ta suy ra:
Dấu "=" xảy ra <=> ad=bc
x x+1 1-x tổng -1 1 0 0 -x-1 x+1 x+1 -1+x -1+x 1-x -2 2x 2 (1)
(1) với -1 ≤ x <1
2x=2 ⇔ x=1 (ktm)
=> pt vô nghiệm
Câu a :
Theo BĐT trên ta có :
\(\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Đẳng thức xảy ra khi \(x=0\)
a: Đặt \(\overrightarrow{a}=\overrightarrow{AB};\overrightarrow{BC}=\overrightarrow{b}\)
\(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{AB}\right|+\left|\overrightarrow{BC}\right|\)=AB+BC
|vecto a+vecto b|=|vecto AB+vecto BC|=AC
AB+BC=AC
=>A,B,C thẳng hàng
=>vecto AB và vecto BC cùng hướng
c: |vecto a+vecto b|=|vecto a-vecto b|
=>vecto a+vecto b=vecto a-vecto b hoặc vecto a+vecto b=vecto b-vecto a
=>vecto b=vecto0 hoặc vecto a=vecto 0
Câu a)
Em mới hc lớp 7 nên chỉ chứng minh cái phần dấu bằng xảy ra khi nào thui. Ko biết có đúng ko
Theo đề bài Ta có
\(\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(ac+bd\right)^2=\left(a^2+b^2\right)^2=\left(c^2+d^2\right)^2\)
Suy ra \(ac=a^2,bd=b^2,ac=b^2\)
Suy ra \(a=b=c=d\)
Vậy dấu bằng xảy ra khi \(a=b=c=d\)