Câu 1: Gọi \(F\left(x\right)\) là một nguyên hàm của \(f\left(x\right)\) . Cho \(f’\left(x\right)=2x\ln\left(x\right)+2x\) và \(f\left(1\right)=\frac{1}{2}\), \(F\left(1\right)=\frac{1}{18}\) . Hỏi phương trình \(\frac{f\left(x\right).F\left(x\right)}{F\left(f\left(x\right)\right)+f\left(F\left(x\right)\right)}=0\) có bao nhiêu nghiệm dương.
Câu 2: Cho \(\int\limits^4_1f\left(x\right)dx=\frac{14\sqrt{2}}{3}\) và \(\int\limits^4_1f’\left(x\right)dx=\sqrt{2}\), \(f\left(0\right)=0\). Tính \(f\left(1\right)+f\left(2\right)\) bằng
Câu 3: Cho \(\int\limits^2_1f\left(x\right)\log\left(x\right)dx=\log\left(4\right)-\frac{3}{4\ln\left(10\right)}\), \(\int\limits^2_1f’\left(x\right)\log\left(x\right)dx=\log\left(4\right)-\frac{1}{\ln10}\) . Khi này phương trình \(f\left(x\right)^2+f\left(x\right)-2=0\) có bao nhiêu nghiệm nguyên.