tìm n \(\in\)Z để 6n\(+\)7 là mẫu của phân số \(\frac{3}{3n+1}\)sau khi quy đồng mẫu số
Ai nhanh mik tick nha, mik ngu toán lắm, mik dg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để thỏa mãn đề bài thì 7n+13 phải chia hết cho n+1 và 3n+1
Trước hết ta xét:\(7n+13⋮n+1\Rightarrow\left(7n+7\right)+6⋮n+1\Rightarrow7\left(n+1\right)+6⋮n+1\Rightarrow6⋮n+1\)
Mà \(n\inℕ^∗\Rightarrow n+1\inℕ^∗\)
\(\Rightarrow n+1\in\left\{2;3;6\right\}\Rightarrow n\in\left\{1;2;5\right\}\)
Lần lượt thay các giá trị của n vào 7n+13 và 3n+1 xem 7n+13 có chia hết cho 3n+1 không
Sau khi thử thì còn các giá trị n là 1;5 thỏa mãn
Vậy n=1 hoặc n=5
Để 7n +13 là mẫu số chung của \(\frac{n}{n+1}và\frac{3}{3n+1}\) thì 7n+13 phải chia hết cho n+1 và 3n+1
*Xét 7n+13\(⋮\)n+1(1)
+)Ta có:n+1\(⋮\)n+1
=>7.(n+1)\(⋮\)n+1
=>7n+7\(⋮\)n+1(2)
+)Từ (1) và (2)
=>(7n+13)-(7n+7)\(⋮\)n+1
=>7n+13-7n-7\(⋮\)n+1
=>6\(⋮\)n+1
=>n+1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3}
=>n\(\in\){-2\(\notin\)N*;0\(\notin\)N*;-3\(\notin\)N*;1\(\in\)N*;-4\(\notin\)N*;2\(\in\)N*}
=>n\(\in\){1;2}(*)
*Xét 7n+13\(⋮\)3n+1
=>3.(7n+13)\(⋮\)3n+1
=>21n+39\(⋮\)3n+1(3)
+)Ta có:3n+1\(⋮\)3n+1
=>7.(3n+1)\(⋮\)3n+1
=>21n+7\(⋮\)3n+1(4)
+)Từ (3) và (4)
=>(21n+39)-(21n+7)\(⋮\)3n+1
=>21n+39-21n-7\(⋮\)3n+1
=>32\(⋮\)3n+1
=>3n+1\(\in\)Ư(32)={\(\pm\)1;\(\pm\)2;\(\pm\)4;\(\pm\)8;\(\pm\)16;\(\pm\)32}
+)Ta có bảng:
3n+1 | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 | -16 | 16 | -32 | 32 |
n | \(\frac{-2}{3}\)\(\notin\)N* | 0\(\notin\)N* | -1\(\notin\)N* | \(\frac{1}{3}\)\(\notin\)N* | \(\frac{-5}{3}\)\(\notin\)N* | 1\(\in\)N* | -3\(\notin\)N* | \(\frac{7}{3}\)\(\notin\)N* | -5\(\notin\)N* | 5\(\in\)N* | \(\frac{-31}{3}\)\(\notin\)N* | \(\frac{31}{3}\)\(\notin\)N* |
=>n\(\in\){1;5}(**)
+)Từ (*) và (**)
=>n=1
Vậy n=1
Chúc bn học tốt
\(A=\frac{5}{n-1}+\frac{n-3}{n-1}=\frac{5+n-3}{n-1}=\frac{n-2}{n-1}\)
a) Để A là phân số thì \(n-1\ne0\)
=> \(n\ne1\)
b) ĐK: n khác 1
Để A là 1 số nguyên thì \(n-2⋮n-1\)
\(\Leftrightarrow1⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(1\right)\)
...
a) Để A là phân số thì n-1 \(\ne\)0 => n \(\ne\)1
b) \(\frac{5}{n-1}\)+ \(\frac{n-3}{n-1}\)= \(\frac{5+n-3}{n-1}\)= \(\frac{n+2}{n-1}\)= \(\frac{n-1+3}{n-1}\)= \(\frac{3}{n-1}\)
Để A là số nguyên thì 3 \(⋮\)n-1
=> n-1 \(\in\)Ư(3) = { 1; 3; -1; -3}
=> n \(\in\){ 2; 4; 0; -2}
Vậy...
\(\frac{1}{15}\) và \(-7\)
Biết\(-7=\frac{-7}{1}\)nên MSC là : 15
Ta có:
\(\frac{1}{15}=\frac{1.1}{15.1}=\frac{1}{15}\)
\(\frac{-7}{1}=\frac{-7.15}{1.15}=\frac{-105}{15}\)
Vậy quy đồng mẫu số các phân số \(\frac{1}{15}\) và \(-7\) ta được \(\frac{1}{15}\) và \(\frac{-105}{15}\)
Câu 1:
MSC=60
7/10=7.6/10.6=42/60 5/-12=-5/12=-5.5/12.5=-25/60
Câu 2:
17/34=1/2; -12/22=-6/11; -25/35=-5/7; 125/75=5/3
Câu 3:
MSC=24
1/3=1.8/3.8=8/24 -3/8=-3.3/8.3=-9/24 17/24=17/24
Ta có B =(10/2n-2)+(n+3/2n-2)
B=13+n/2n-2
2B=26+2n/2n-2
2B=(2n-2/2n-2)+(28/2n-2)
2B=1+(28/2n-2)
Để B nhỏ nhất thì 2n-2<0 và là lớn nhất
<=>n<-1 và là lớn nhất
=>n=-1
=>B=-3
Mk viết hơi khó hiểu nên bn chịu khó dịch nhé!
Để thỏa mãn đề bài thì 6n+7 chia hết cho 3n+1 ta có
\(6n+7⋮3n+1\Rightarrow\left(6n+2\right)+5⋮3n+1\Rightarrow2\left(3n+1\right)+5⋮3n+1\Rightarrow5⋮3n+1\)
Mà\(n\inℤ\Rightarrow3n+1\inℤ\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
ta có bảng sau:
Vậy\(n\in\left\{-2;0\right\}\)