K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

\(=3x^3+4xy^2-5x^2y-9x^2y-12y^3+15xy^2\)

 

15 tháng 4 2021

a) \(\left\{{}\begin{matrix}2x+3y=-5\\6x-5y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-15\\6x-5y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}14y=-42\\2x+3y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x+3.\left(-3\right)=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x-9=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

b) \(3x^2+4x=0\) 

\(\Leftrightarrow x\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{0;-\dfrac{4}{3}\right\}\)

c) Đặt:  \(x^2=t\left(t\ge0\right)\)

\(\Rightarrow\) Ta có phương trình mới:

\(t^2-3t-4=0\) 

Ta có: a - b + c = 1 + 3 - 4 = 0

\(\Rightarrow t_1=-1\left(loại\right);t_2=4\left(TM\right)\)

\(\Rightarrow x=\pm2\)

Vậy tập nghiệm của phương trình là: S = {2; -2}

15 tháng 4 2021

a, \(\left\{{}\begin{matrix}2x+3y=-5\\6x-5y=27\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-15\left(1\right)\\6x-5y=27\left(2\right)\end{matrix}\right.\)

Lấy (1) - (2) ta được : \(14y=-15-27=-42\Leftrightarrow y=-3\)

\(\Rightarrow6x-27=-15\Leftrightarrow6x=12\Leftrightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;-3\right)\)

b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow x=0;x=-\dfrac{4}{3}\)

c, \(x^4-3x^2-4=0\Leftrightarrow x^4+x^2-4x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)+x^2-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=\pm2;x^2+1>0\)

Vậy nghiệm của phương trình là x = -2 ; x = 2 

 

 

17 tháng 3 2021

a)bậc của da thức 2x-5xy+3x2 là:5

b)bậc của da thức ax2+2x2 là:4

c)bậc của da thức ax3+2xy là:5

d)bậc của da thức 4y2-3y4 là:6

e)bậc của da thức -3x5-\(\dfrac{1}{2}\)x3y-\(\dfrac{3}{4}\)xy2+3x5+2 là:17

 

1 tháng 10 2021

a) \(4x^3y^2-8x^2y+12xy^2=4xy\left(x^2y-2x+3y\right)\)

b) \(3x^2-6xy-5x+10y=3x\left(x-2y\right)-5\left(x-2y\right)=\left(x-2y\right)\left(3x-5\right)\)

c) \(x^2-49+4y^2-4xy=\left(x-2y\right)^2-49=\left(x-2y-7\right)\left(x-2y+7\right)\)

d) \(x^2-6x-16=\left(x^2-6x+9\right)-25=\left(x-3\right)^2-25=\left(x-3-5\right)\left(x-3+5\right)=\left(x-8\right)\left(x+2\right)\)

1 tháng 10 2021

a) 4x3y2−8x2y+12xy2=4xy(x2y−2x+3y)4x3y2−8x2y+12xy2=4xy(x2y−2x+3y)

b) 3x2−6xy−5x+10y=3x(x−2y)−5(x−2y)=(x−2y)(3x−5)3x2−6xy−5x+10y=3x(x−2y)−5(x−2y)=(x−2y)(3x−5)

c) x2−49+4y2−4xy=(x−2y)2−49=(x−2y−7)(x−2y+7)x2−49+4y2−4xy=(x−2y)2−49=(x−2y−7)(x−2y+7)

d) x2−6x−16=(x2−6x+9)−25=(x−3)2−25=(x−3−5)(x−3+5)=(x−8)(x+2)

1 tháng 10 2021

a) \(4x^3y^2-8x^2y+12xy^2=4xy.x^2y-4xy.2x+4xy.3y=4xy\left(x^2y-2x+3y\right)\)

b) \(3x^2-6xy-5x+10y=\left(3x^2-6xy\right)-\left(5x-10y\right)=3x\left(x-2y\right)-5\left(x-2y\right)=\left(x-2y\right)\left(3x-5\right)\)

c) \(x^2-49+4y^2-4xy=\left(x^2-4xy+4y^2\right)-49=\left(x-2y\right)^2-7^2=\left(x-2y-7\right)\left(x-2y+7\right)\)

d) \(x^2-6x-16=\left(x^2-8x\right)+\left(2x-16\right)=x\left(x-8\right)+2\left(x-8\right)=\left(x-8\right)\left(x+2\right)\)

10 tháng 5 2022

Có: `x-2y+4=0`

`<=>x=2y-4`

Thay `x=2y-4` vào `(E)` có:

      `3(2y-4)^2+4y^2-48=0`

`<=>3(4y^2-16y+16)+4y^2-48=0`

`<=>12y^2-48y+48+4y^2-48=0`

`<=>` $\left[\begin{matrix} y=3\\ y=0\end{matrix}\right.$

    `@y=3=>x=2.3-4=2`

     `@y=0=>x=2.0-4=-4`

`=>` Tọa độ giao điểm của `(E)` và `(d)` là: `(2;3)` và `(-4;0)`

                  `->D`

10 tháng 5 2022

\(\Rightarrow\) \(chọn\) \(D\)

\(xét\) \(hpt\) \(:\)

\(\left\{{}\begin{matrix}3x^2+4y^2-48=0\\x-2y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(2y-4\right)^2+4y^2-48=0\\x=2y-4\end{matrix}\right.\)

\(giải:\) \(3\left(4y^2-16y+16\right)+4y^2-48=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}12y^2-48y+48+4y^2-48=0\\16y^2-48y=0\\\left[{}\begin{matrix}y=0\Rightarrow x=-4\\y=3\Rightarrow x=2\end{matrix}\right.\end{matrix}\right.\)

\(vậy\) \(giao\) \(điểm\) \(của\) \(elip\) \(\left(E\right)\) \(là\) \(\left(-4;0\right)\) \(và\) \(\left(2;3\right)\)

 

 

21 tháng 5 2021

a/ \(x^2-2.4x+16+y^2+2y+1+z^2=16\Leftrightarrow\left(x-4\right)^2+\left(y+1\right)^2+z^2=16\)

\(\Rightarrow\left\{{}\begin{matrix}I\left(4;-1;0\right)\\R=\sqrt{16}=4\end{matrix}\right.\)

b/ \(x^2+y^2+z^2+2x-y+5z-\dfrac{2}{3}=0\Leftrightarrow x^2+2x+1+y^2-2.\dfrac{1}{2}y+\dfrac{1}{4}+z^2+2.\dfrac{5}{2}z+\dfrac{25}{4}=\dfrac{2}{3}+1+\dfrac{1}{4}+\dfrac{25}{4}\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z+\dfrac{5}{2}\right)^2=\dfrac{49}{6}\) \(\Rightarrow\left\{{}\begin{matrix}I\left(-1;\dfrac{1}{2};-\dfrac{5}{2}\right)\\R=\dfrac{7}{\sqrt{6}}\end{matrix}\right.\)

P/s: câu c bạn tự làm nốt ạ!

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

10 tháng 10 2021

\(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)

\(x\left(x+y\right)-6x-6y=\left(x+y\right)\left(x-6\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(9x^2-\dfrac{1}{4}=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)