\(\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}=2\sqrt{6}\end{cases} \)
Giải giúp em ạ :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đề câu a phải như vậy nè:
\(a,\hept{\begin{cases}\frac{1}{x-2}+\frac{1}{y-1}=1\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{cases}}\)\(Đkxđ:\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)
Đặt: \(X=\frac{1}{x-2};Y=\frac{1}{y-1}\)
Ta có hệ sau:
\(\hept{\begin{cases}X+Y=1\\2X-3Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2\left(1-Y\right)-3Y=1\end{cases}}}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2-5Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=\frac{4}{5}\\Y=\frac{1}{5}\end{cases}}}\)
Với \(X=\frac{4}{5}\Rightarrow\frac{1}{x-2}=\frac{4}{5}\Leftrightarrow4\left(x-2\right)=5\Leftrightarrow x=\frac{13}{4}\)
Với \(Y=\frac{1}{5}\Rightarrow\frac{1}{y-1}=\frac{1}{5}\Leftrightarrow y-1=5\Leftrightarrow y=6\)
Vậy nghiệm của hệ pt là: \(\left(x;y\right)=\left(\frac{13}{4};6\right)\)
Câu b e nghĩ đề như vậy nè:
\(b,\hept{\begin{cases}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{3}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{3}{6}\end{cases}}\) \(Đkxđ:\hept{\begin{cases}x>7\\x>-6\end{cases}}\)
Đặt \(\frac{1}{\sqrt{x-7}}=a\left(a>0\right);\frac{1}{\sqrt{y+6}}=b\left(b>0\right)\)
Ta có hệ pt mới: \(\hept{\begin{cases}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\end{cases}}\left(tmđk\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x-7=9\\x+6=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=30\end{cases}\left(tmđk\right)}\)
Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(16;30\right)\)
1) \(x^3-3x^2y-4x^2+4y^3+16xy=16y^2\Leftrightarrow x^3-3x^2y-4x^2+4y^3+16xy-16y^2=0\)
đưa về phương trình tích : \(\left(x-2y\right)^2\left(x+y-4\right)=0\) tới đây ok chưa
3) ĐK : x \(\ge\)0 ; \(y\ge3\)\(\Rightarrow x+y>0\)
đặt \(\sqrt{x+y}=a;\sqrt{x+3}=b\)
\(\Rightarrow y-3=\left(x+y\right)-\left(x+3\right)=a^2-b^2\)
PT : \(\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\Leftrightarrow3\sqrt{x+y}+3\sqrt{x+3}=y-3\)
\(\Leftrightarrow3\left(a+b\right)=a^2-b^2\Leftrightarrow\left(a+b\right)\left(3-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}a+b=0\\a-b=3\end{cases}}\)
Mà a + b = \(\sqrt{x+y}+\sqrt{x+3}>0\)nên loại
a - b = 3 thì \(\sqrt{x+y}-\sqrt{x+3}=3\), ta có HPT : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x+3}=3\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)
\(\Rightarrow\)\(\sqrt{x}+\sqrt{x+3}=x\Leftrightarrow\sqrt{x+3}=x-\sqrt{x}\Leftrightarrow x^2-2x\sqrt{x}-3=0\Leftrightarrow x=\left(1+\sqrt[3]{2}\right)^2\)
từ đó tìm đc y
a: \(\left\{{}\begin{matrix}\left(\sqrt{3}+1\right)x+\left(\sqrt{3}-1\right)y=\sqrt{3}\\2\sqrt{3}x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(\sqrt{3}+1\right)^2\cdot x+\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)y=\sqrt{3}\left(\sqrt{3}+1\right)\\2\sqrt{3}x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(4+2\sqrt{3}\right)+2y=3+\sqrt{3}\\2\sqrt{3}\cdot x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(4+2\sqrt{3}+2\sqrt{3}\right)=3+\sqrt{3}+3\sqrt{3}+1\\2\sqrt{3}\cdot x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\2y=2\sqrt{3}-3\sqrt{3}-1=-\sqrt{3}-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=\dfrac{-\sqrt{3}-1}{2}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x\sqrt{3}+y\sqrt{2}=1\\x\sqrt{2}+y\sqrt{3}=\sqrt{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\sqrt{6}+2y=\sqrt{2}\\x\sqrt{6}+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y-3y=\sqrt{2}-3\\x\sqrt{3}+y\sqrt{2}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=\sqrt{2}-3\\x\sqrt{3}=1-y\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-\sqrt{2}\\x\sqrt{3}=1-\sqrt{2}\left(3-\sqrt{2}\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3-\sqrt{2}\\x\sqrt{3}=1-3\sqrt{2}+2=3-3\sqrt{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3-\sqrt{2}\\x=\sqrt{3}-\sqrt{6}\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=\left(x+1\right)\left(y-3\right)\\\left(x-5\right)\left(y+4\right)=\left(x-4\right)\left(y+1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy-2y-y+2=xy-3x+y-3\\xy+4x-5y-20=xy+x-4y-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x-y+2=-3x+y-3\\4x-5y-20=x-4y-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x-y+3x-y=-3-2=-5\\4x-5y-x+4y=-4+20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=-5\\3x-y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-6y=-15\\3x-y=16\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-5y=-15-16=-31\\x-2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{31}{5}\\x=-5+2y=-5+\dfrac{62}{5}=\dfrac{37}{5}\end{matrix}\right.\)
1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)
=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)
Tham khảo nhé~
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
2)ĐK:x\(\ge\frac{1}{2}\)
pt(2)\(\Leftrightarrow\left(y+1\right)^3\)+(y+1)=\(\left(2x\right)^3\)+2x
Xét hàm số: f(t)=\(t^3\)+t
f'(t)=3\(t^2\)+1>0,\(\forall\)t
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow\)y+1=2x
Thay y=2x-1 vào pt(1) ta đc:
\(x^2\)-2x=2\(\sqrt{2x-1}\)
\(\Leftrightarrow\left(x^2-4x+2\right)\left(1+\frac{4}{2x-2+2\sqrt{2x-1}}\right)=0\)
\(\Leftrightarrow x^2\)-4x+2=0(do(...)>0)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2+\sqrt{2}\Rightarrow y=3+2\sqrt{2}\\x=2-\sqrt{2}\Rightarrow y=3-2\sqrt{2}\end{array}\right.\)
4)ĐK:\(y\ge\frac{2}{3}\)
pt(1)\(\Leftrightarrow x-\sqrt{3y-2}=\sqrt{3y\left(3y-2\right)}-x\sqrt{x^2+2}\)
\(\Leftrightarrow x\left(\sqrt{x^2+2}+1\right)=\sqrt{3y-2}\left(\sqrt{3y}+1\right)\)
Xét hàm số:\(f\left(t\right)=t\left(\sqrt{t^2+2}+1\right)\)
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow x=\sqrt{3y-2}\)
Thay vào pt(2) ta đc:\(\sqrt{3y-2}+y+\sqrt{y+3}=4\)
\(\Leftrightarrow\sqrt{3y-2}-1+\sqrt{y+3}-2+y-1=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{3}{\sqrt{3y-2}+1}+\frac{1}{\sqrt{y+3}+2}+1\right)=0\)
\(\Leftrightarrow y=1\Rightarrow x=1\)(do...)>0)
KL:...
ĐKXĐ: x > -3
y > -1
Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\left(a\ge0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\) thì hệ đã cho trở thành
\(\hept{\begin{cases}2a-3b=2\\a-b=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2a-3b=2\\2a-2b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}b=0\\a=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+3}=1\\\sqrt{y+1}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=-1\end{cases}\left(tm\right)}\)
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
Căn 3 y ạ
\(\Leftrightarrow\left\{{}\begin{matrix}3x-\sqrt{6}y=\sqrt{3}\\2x+\sqrt{6}y=4\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=5\sqrt{3}\\2x+\sqrt{6}y=4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{3}\\y=\frac{4\sqrt{3}-2x}{\sqrt{6}}=\sqrt{2}\end{matrix}\right.\)