K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

a) \(x^4+3x^2+9=0\)

\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{27}{4}=0\)

\(\Leftrightarrow\left(x^2+\frac{3}{2}\right)^2=-\frac{27}{4}\) ( vô nghiệm do \(\left(x^2+\frac{3}{2}\right)^2\ge0\ne-\frac{27}{4}\forall x\))

b) \(x^4+5x^2+9=0\)

\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{11}{4}=0\)

\(\Leftrightarrow\left(x^2+\frac{5}{2}\right)^2=-\frac{11}{4}\) ( vô nghiệm do \(\left(x^2+\frac{5}{2}\right)^2\ge0\ne-\frac{11}{4}\forall x\) )

c) \(x^4-3x^2+9=0\)

\(\Leftrightarrow\left(x^2\right)^2-2\cdot x^2\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{27}{4}=0\)

\(\Leftrightarrow\left(x^2-\frac{3}{2}\right)^2=-\frac{27}{4}\) ( vô nghiệm do \(\left(x^2-\frac{3}{2}\right)^2\ge0\ne-\frac{27}{4}\forall x\) )

15 tháng 2 2020

a) Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành: \(t^2+3t+9=0\)

Ta có: \(\Delta=3^2-4.9=-27< 0\)

Vậy phương trình vô nghiệm

b) Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành: \(t^2+5t+9=0\)

Ta có: \(\Delta=5^2-4.9=-11< 0\)

Vậy phương trình vô nghiệm

c) Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành: \(t^2-3t+9=0\)

Ta có: \(\Delta=3^2-4.9=-27< 0\)

Vậy phương trình vô nghiệm

23 tháng 7 2019

a)  x 4   –   5 x 2   +   4   =   0   ( 1 )

Đặt x 2   =   t, điều kiện t ≥ 0.

Khi đó (1) trở thành :  t 2   –   5 t   +   4   =   0   ( 2 )

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2   =   1  ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x 2   =   4  ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b)  2 x 4   –   3 x 2   –   2   =   0 ;   ( 1 )

Đặt   x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  2 t 2   –   3 t   –   2   =   0   ( 2 )

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒   Δ   =   ( - 3 ) 2   -   4 . 2 . ( - 2 )   =   25   >   0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t 1   =   2  thỏa mãn điều kiện.

+ Với t = 2 ⇒ x 2   =   2  ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c)  3 x 4   +   10 x 2   +   3   =   0   ( 1 )

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  3 t 2   +   10 t   +   3   =   0   ( 2 )

Giải (2) : Có a = 3; b' = 5; c = 3

⇒  Δ ’   =   5 2   –   3 . 3   =   16   >   0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

7 tháng 7 2019

Cả ba phương trình trên đều là phương trình trùng phương.

a)  3 x 4   –   12 x 2   +   9   =   0   ( 1 )

Đặt x 2   =   t ,  t ≥ 0.

(1) trở thành:  3 t 2   –   12 t   +   9   =   0   ( 2 )

Giải (2):

Có a = 3; b = -12; c = 9

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1   v à   t 2   =   3 .

Cả hai nghiệm đều thỏa mãn điều kiện.

+ t = 3 ⇒ x 2 = 3 ⇒ x = ± 3 + t = 1 ⇒ x 2 = 1 ⇒ x = ± 1

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  2 x 4   +   3 x 2   –   2   =   0   ( 1 )

Đặt x 2   =   t , t ≥ 0.

(1) trở thành:    2 t 2   +   3 t   –   2   =   0   ( 2 )

Giải (2) :

Có a = 2 ; b = 3 ; c = -2

⇒   Δ   =   3 2   –   4 . 2 . ( - 2 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

t 1   =   - 2   <   0  nên loại.

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

c)  x 4   +   5 x 2   +   1   =   0   ( 1 )

Đặt  x 2   =   t ,   t   >   0 .

(1) trở thành:  t 2   +   5 t   +   1   =   0   ( 2 )

Giải (2):

Có a = 1; b = 5; c = 1

⇒   Δ   =   5 2   –   4 . 1 . 1   =   21   >   0

⇒ Phương trình có hai nghiệm:

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

NV
5 tháng 1

a.

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3-3x^2+2x+3x^2-9x+6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)+3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-x-2x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

NV
5 tháng 1

f.

\(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)

\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-3\left(x-1\right)\right]\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\\x=\pm\sqrt{3}\end{matrix}\right.\)

14 tháng 4 2017

a) Ta có:  Δ = 196 > 0     

Phương trình có 2 nghiệm  x 1 = 3 ,   x 2 = 1 5

b) Đặt  t = x 2 ,   t ≥ 0 , phương trình trở thành  t 2 + 9 t − 10 = 0

Giải ra được t=1 (nhận); t= -10 (loại)

Khi t=1, ta có  x 2 = 1 ⇔ x = ± 1 .

c)  3 x − 2 y = 10 x + 3 y = 7 ⇔ 3 x − 2 y = 10         ( 1 ) 3 x + 9 y = 21       ( 2 )

(1) – (2) từng vế ta được: y=1

Thay y= 1 vào (1) ta được x= 4

Vậy hệ phương trình có nghiệm duy nhất là x= 4; y= 1.

16 tháng 4 2021

1) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+5y=50\\10x-6y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=44\\2x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy hpt có nghiệm (x;y) = (3;4)

2)

a) 3x2 - 2x - 1 = 0

\(\Leftrightarrow3x^2-3x+x-1=0\)

\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)

Vậy pt có nghiệm x = 1 hoặc x = 3

b) Đặt x2 = t (t \(\ge\) 0)

Pt trở thành: t2 - 20t + 4 = 0

\(\Delta\) = (-20)2 - 4.1.4 = 400 - 16 = 384

=> pt có 2 nghiệm phân biệt t1 = \(\dfrac{20+8\sqrt{6}}{2}=10+4\sqrt{6}\)

t2 = \(\dfrac{20-8\sqrt{6}}{2}=10-4\sqrt{6}\)

=> x1 = \(\sqrt{10+4\sqrt{6}}=\sqrt{\left(2+\sqrt{6}\right)^2}=2+\sqrt{6}\)

x2 = \(2-\sqrt{6}\)

15 tháng 4 2021

a) \(\left\{{}\begin{matrix}2x+3y=-5\\6x-5y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-15\\6x-5y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}14y=-42\\2x+3y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x+3.\left(-3\right)=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x-9=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

b) \(3x^2+4x=0\) 

\(\Leftrightarrow x\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{0;-\dfrac{4}{3}\right\}\)

c) Đặt:  \(x^2=t\left(t\ge0\right)\)

\(\Rightarrow\) Ta có phương trình mới:

\(t^2-3t-4=0\) 

Ta có: a - b + c = 1 + 3 - 4 = 0

\(\Rightarrow t_1=-1\left(loại\right);t_2=4\left(TM\right)\)

\(\Rightarrow x=\pm2\)

Vậy tập nghiệm của phương trình là: S = {2; -2}

15 tháng 4 2021

a, \(\left\{{}\begin{matrix}2x+3y=-5\\6x-5y=27\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-15\left(1\right)\\6x-5y=27\left(2\right)\end{matrix}\right.\)

Lấy (1) - (2) ta được : \(14y=-15-27=-42\Leftrightarrow y=-3\)

\(\Rightarrow6x-27=-15\Leftrightarrow6x=12\Leftrightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;-3\right)\)

b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow x=0;x=-\dfrac{4}{3}\)

c, \(x^4-3x^2-4=0\Leftrightarrow x^4+x^2-4x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)+x^2-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=\pm2;x^2+1>0\)

Vậy nghiệm của phương trình là x = -2 ; x = 2 

 

 

20 tháng 3 2022

a, Có \(\left(x^2-9\right)^2\)≥0   ∀ x ∈ Z

           |y-2| ≥0   ∀ y ∈ Z

⇒ Gía trị nhỏ nhất A=-1. Dấu ''='' xảy ra khi:\(\left(x^2-9\right)^2\)+|y-2|=0

                                                                 ⇒   \(x=3\) ;  \(y=2\)

Vậy.....

b, Có \(x^4\) ≥ 0 ∀ x ∈ Z

         3\(x^2\) ≥ 0 ∀ x ∈ Z

 ⇒ Giá trị nhỏ nhất của B=2. Dấu ''='' xảy ra khi: \(x^4\)+3\(x^2\)=0

                                                                         ⇒  \(x^2\left(x^2+3\right)\)=0

                                                                         ⇒  \(x^2\)             =0

                                                                         ⇒   \(x=0\)

Vậy...

4 tháng 11 2017

a)  5 x 2   –   x   +   2   =   0 ;

a = 5; b = -1; c = 2

Δ   =   b 2   -   4 a c   =   ( - 1 ) 2   -   4 . 5 . 2

= 1 - 40 = -39 < 0

Vậy phương trình trên vô nghiệm.

b) 4 x 2   –   4 x   +   1   =   0 ;

a = 4; b = -4; c = 1

Δ   =   b 2   -   4 a c   =   ( - 4 ) 2 -   4 . 4 . 1   =   16   -   16   =   0

⇒ phương trình có nghiệm kép

x = (-b)/2a = (-(-4))/2.4 = 1/2

Vậy phương trình có nghiệm duy nhất x = 1/2

c)  - 3 x 2   +   x   +   5   =   0

a = -3; b = 1; c = 5

Δ   =   b 2   -   4 a c   =   12   -   4 . ( - 3 ) . 5   =   1   +   60   =   61   >   0

⇒ Do Δ >0 nên áp dụng công thức nghiệm, phương trình có 2 nghiệm phân biệt

x 1   =   ( 1   -   √ 61 ) / 6 ;   x 2   =   ( 1   +   √ 61 ) / 6

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

a.

$x^4-25x^3=0$

$\Leftrightarrow x^3(x-25)=0$

\(\Leftrightarrow \left[\begin{matrix} x^3=0\\ x-25=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=25\end{matrix}\right.\)

b.

$(x-5)^2-(3x-2)^2=0$

$\Leftrightarrow (x-5-3x+2)(x-5+3x-2)=0$

$\Leftrightarrow (-2x-3)(4x-7)=0$
\(\Leftrightarrow \left[\begin{matrix} -2x-3=0\\ 4x-7=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{7}{4}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

c.

$x^3-4x^2-9x+36=0$

$\Leftrightarrow x^2(x-4)-9(x-4)=0$

$\Leftrightarrow (x-4)(x^2-9)=0$

$\Leftrightarrow (x-4)(x-3)(x+3)=0$

\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ x-3=0\\ x+3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4\\ x=3\\ x=-3\end{matrix}\right.\)

d. ĐK: $x\neq 0$

$(-x^3+3x^2-4x):(\frac{-1}{2}x)=0$

$\Leftrightarrow x(-x^2+3x-4):(\frac{-1}{2}x)=0$

$\Leftrightarrow -2(-x^2+3x-4)=0$

$\Leftrightarrow x^2-3x+4=0$

$\Leftrightarrow (x-1,5)^2=-1,75< 0$ (vô lý)

Vậy pt vô nghiệm.

2 tháng 9 2021

Bài 2:

a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)

b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)

c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)

d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)

f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)

g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)

i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)

 

a: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=\left(x+1\right)\left(3x-10\right)\)

b: \(x^2+6x+9-4y^2\)

\(=\left(x+3\right)^2-4y^2\)

\(=\left(x+3-2y\right)\left(x+3+2y\right)\)

c: \(x^2-2xy+y^2-5x+5y\)

\(=\left(x-y\right)^2-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-5\right)\)