Tìm x thuộc Z
3.|x-1|-27=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x -(-7) = 27
=> 4x = 27 + (-7)
=> 4x = 20
=> x = 20:4
=> x =5
a: =>3^x=3^4*3=3^5
=>x=5
b: =>\(2^{x+1}=2^5\)
=>x+1=5
=>x=4
c: \(\Leftrightarrow3^{x+2-3}=3\)
=>x-1=1
=>x=2
d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)
=>x=4 hoặc x=-4
e: (2x-1)^4=81
=>2x-1=3 hoặc 2x-1=-3
=>2x=4 hoặc 2x=-2
=>x=-1 hoặc x=2
f: (2x-6)^4=0
=>2x-6=0
=>x-3=0
=>x=3
a) \(3^x=81\cdot3\)
\(\Rightarrow3^x=3^4\cdot3\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
b) \(2^{x+1}=32\)
\(\Rightarrow2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
c) \(3^{x+2}:27=3\)
\(\Rightarrow3^{x+2}:3^3=3\)
\(\Rightarrow3^{x+2-3}=3\)
\(\Rightarrow3^{x-1}=3\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
d) \(2x^2=32\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
e) \(\left(2x-1\right)^4=81\)
\(\Rightarrow\left(2x-1\right)^4=3^4\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
f) \(\left(2x-6\right)^4=0\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=6:2\)
\(\Rightarrow x=3\)
1,7-(18+x)=-15
<=>18+x=7+15
<=>18+x=22
<=>x=4
2,(x-17)-(-3)=0
<=>x-17+3=0
<=>x-17=-3
,<=>x=14
<=>
1,
7 - ( 18 + x ) = - 15
18 + x = 7 + 15
18 + x = 22
x = 22 - 18
x = 4
2,
( x - 17 ) - ( - 3 ) = 0
( x - 17 ) + 3 = 0
x - 17 = - 3
x = -3 + 17
x = 14
3, -18 - ( x - 6 ) = 0
-18 = x- 6
x = - 18 + 6
x = - 12
4, 29 - ( 10 + 29 ) = x - ( 27 - 9 )
-10 = x - 18
x = - 10 + 18
x = 8
Vì: \(\left|x+\frac{13}{14}\right|\ge0\forall x;\left|y-\frac{8}{27}\right|\ge0\forall y\)
mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{8}{27}\right|=0\)
\(\Rightarrow\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{8}{27}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{8}{27}\end{cases}}\)
Vậy \(x=-\frac{3}{4};y=\frac{8}{27}\)
a) 3xy + x + 2y = 0
=> x.(3y + 1) = -2y
=> \(x=\frac{-2y}{3y+1}\)
Mà x nguyên => -2y chia hết cho 3y + 1
=> 2y chia hết cho 3y + 1
=> 6y chia hết cho 3y + 1
=> 6y + 2 - 2 chia hết cho 3y + 1
=> 2.(3y + 1) - 2 chia hết cho 3y + 1
Do 2.(3y + 1) chia hết cho 3y + 1 => 2 chia hết cho 3y + 1
=> \(3y+1\in\left\{1;-1;2;-2\right\}\)
Mà 3y + 1 chia 3 dư 1 => 3y + 1 \(\in\left\{1;-2\right\}\)
+ Với 3y + 1 = 1 thì 3y = 0 => y = 0
=> \(x=\frac{-2.0}{3.0+1}=\frac{0}{1}=0\)
+ Với 3y + 1 = -2 thì 3y = -3 => y = -1
=> \(x=\frac{-2.\left(-1\right)}{3.\left(-1\right)+1}=\frac{2}{-3+1}=\frac{2}{-2}=-1\)
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (0;0) ; (-1;-1)
b) Ta có:
10n + 45n - 1
= 10n - 1 - 9n + 54n
= 999...9 - 9n + 54n
(n c/s 9)
= 9.(111...1 - n) + 54n
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà tổng các chữ số 111...1 là n
(n c/s 1)
=> 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27; 54n chia hết cho 27
(n c/s 1)
=> 10n + 45n - 1 chia hết cho 27 (đpcm)
1.So sánh < = >
a) ( -3332047) < 0
b) ( -152016) < 0
c) 5a < 0 ; a thuộc Z.
d) 5b > 0 ; b thuộc Z.
2 Tìm x thuộc Z .
a) x3 = 27
x3 = 33
\(\Rightarrow\)X=3
vẬY X=3
b) x2 = 16
x2 = 42
\(\Rightarrow\)x=4
Vậy x=4
Chắc vậy
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
Ta có:3.(x-1)-27=0
3.(x-1)=0+27=27
x-1=27/3=9
x=9+1=10
Tự kết luận
3.|x-1|-27=0
3.|x-1| =0+27
3.|x-1| =27
|x-1| =27:3
|x-1| =9
x =9+1
x 10