Cho a-b=1.Tính S biết:S=-(a-b-c)+(-c+b+a)-(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a\left(b-2\right)=3\Rightarrow a\left(b-2\right)=Ư\left(3\right)\)
\(a\left(b-2\right)=a=Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
Mà \(a>0\Rightarrow a=\left\{1;3\right\}\)
\(\Rightarrow\left[\begin{matrix}a=1\Rightarrow b-2=3\Rightarrow b=5\\a=3\Rightarrow b-2=1\Rightarrow b=3\end{matrix}\right.\)
\(\Rightarrow a=\left\{1;3\right\},b=\left\{5;3\right\}\)
Bài 2:
\(S=-\left(a-b-c\right)+\left(-c+b+a\right)-\left(a+b\right)\)
\(=-a+b+c-c+b+a-a-b\)
\(=\left(-a+a-a\right)+\left(b+b-b\right)+\left(c-c\right)\)
\(=-a+b+0\)
\(=b-a\)
Vì \(a>b\Rightarrow\left|S\right|=a-b\)
Bài 3:
\(A+B=a+b-5+\left(-b-c+1\right)\)
\(=a+b-5-b-c+1=a-c-4\)(1)
\(C-D=b-c-4-\left(b-a\right)\)
\(=b-c-4-b+a=-c-4+a=a-c-4\)(2)
Từ (1) và (2) \(\Rightarrow A+B=C-D\)(Đpcm)
\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)
Mà \(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)
\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)
\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)
\(=2014.\frac{1}{2014}-3=1-3=-2\)
Vậy.....................
\(S=-\left(a-b-c\right)+\left(-c+b+a\right)-\left(a+b\right)\)
\(S=-a+b+c-c+b+a-a-b\)
\(S=-a+b=-\left(a-b\right)=-1\)
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2015.\frac{1}{90}-3=19\frac{7}{18}\)
Ta có : \(S=-\left(a-b-c\right)+\left(-c+b+a\right)-\left(a+b\right)\)
=> \(S=-a+b+c-c+b+a-a-b\)
=> \(S=b-a\)
Mà \(a-b=1\)
=> \(b-a=-1\)
- Thay \(b-a=-1\) vào biểu thức S ta được : \(S=b-a=-1\)
Vậy S = -1 .