K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

sinB = b/a; cosB = c/a; tgB = b/c; cotgB = c/b

sinC = c/a; cosC = b/a; tgC = c/b; cotgB = b/c

a) b = a.(b/a) = a.sinB = a.cosC

c = a. (c/a) = a.cosB = a.sinC

b) b = c. (b/c) = c.tgB = c.cotgC

c = b.(c/b) = b.cotgB = b.tgC

20 tháng 3 2018

sinB = b/a; cosB = c/a; tgB = b/c; cotgB = c/b

sinC = c/a; cosC = b/a; tgC = c/b; cotgB = b/c

b = a.(b/a) = a.sinB = a.cosC

c = a. (c/a) = a.cosB = a.sinC

1 tháng 1 2017

b = c. (b/c) = c.tgB = c.cotgC

c = b.(c/b) = b.cotgB = b.tgC

24 tháng 4 2017

a) b = a sin α = a cos β
c = a sin β = a cos α

b) b = c tg α = c cotg β
c = b tg β = b cotg α

24 tháng 4 2017

a) b = asin α = acosβ; c = asinβ = acosα

b) b = c.tgβ = c.cotgα

29 tháng 3 2018

b = asin α = acosβ; c = asinβ = acosα

3 tháng 9 2020

a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC

Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)

Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\) 

b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé