Trên (C) bán kính = 1 cho 2019 điểm phân biệt A1, A2, A3....A2019. Cmr tồn tại 1 điểm M trên (C) thỏa mãn MA1 + MA2 + ...+ MA2019 > 2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
Cộng 2 vế của -4038.(1) + (2) ta được
\(a_1^2+a_2^2+...+a_{2019}^2-4038\left(a_1+a_2+...+a_{2019}\right)\le2019^3+1-4028.2019^2\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}\)
\(\le2019^3+1-2019.2019^2-2019.2019^2\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}+2019.2019^2\le1\)
\(\Leftrightarrow\left(a_1^2-4038a_1+2019^2\right)+...+\left(a_{2019}^2-4038a_{2019}+2019^2\right)\le1\)
\(\Leftrightarrow A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\le1\)
Do \(a_1;a_2;...;a_{2019}\in N\)nên \(A\in N\)
\(\Rightarrow\orbr{\begin{cases}A=0\\A=1\end{cases}}\)
*Nếu A = 0
Dễ thấy \(A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\ge0\forall a_1;a_2;...;a_{2019}\)
Nên dấu "=" xảy ra \(\Leftrightarrow a_1=a_2=a_3=...=a_{2019}=2019\)
*Nếu A = 1
\(\Leftrightarrow\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2=1\)(*)
Từ đó dễ dàng nhận ra trong 2019 số \(\left(a_1-2019\right)^2;\left(a_2-2019\right)^2;...;\left(a_{2019}-2019\right)^2\)phải tồn tại 2018 số bằng 0
Hay nói cách khác trong 2019 số \(a_1;a_2;a_3;...;a_{2019}\)phải tồn tại 2018 số có giá trị bằng 2019
Giả sử \(a_1=a_2=...=a_{2018}=2019\)
Khi đó (*)\(\Leftrightarrow\left(a_{2019}-2019\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}a_{2019}=2020\\a_{2019}=2018\end{cases}}\)
Thử lại...(tự thử nhé)
Vậy...
Bài 1 : Vì \(4^{2019}\)có cơ số là 4 , số mũ 2019 là lẻ nên có tận cùng là 4
Để \(4^{2019}+3^n\)có tận cùng là 7 thì \(3^n\)có tận cùng là 3
Mà n là số tự nhiên nên n = 1
mình đang cần gấp sắp đến giờ học ở trung tâm rồi ! không có bài mình chết chắc . nhanh lên giùm mình nha!thanks you.
Trần Thanh Phương@Nguyễn Việt LâmMysterious Person
nếu trong trường hợp tất cả các điểm tập trung tại 1 vùng lân cận thì chỉ cần đặc điểm M để điểm M cách \(A_i\) một khoản hơn 1
còn nếu nó tách làm 2 phần thì trường hợp 2 vùng này đối diện nhau là khả quan nhất nhưng số đo dây cung của góc \(45^0\) trong TH này là \(\sqrt{2}\) vì vậy vẫn có điểm thõa mãn bài toán
từ 3 vùng trở lên là nằm trong diện phân bố đều ==> mình làm lun trường hợp phân bố đều . khi đó điểm nào cũng thõa mãn
nếu trong trường hợp chia 3 không đều thì ta chỉ cần tìm M cách xa vùng nhiều điểm nhất là được
đây là cách giải biện luận của lớp 9 còn lớp 10 thì khác nhé khi đó đã có khái niệm về phương trình đường tròn rồi nên giải mới làm được