giải giùm em câu 5a ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để em viết ra vậy ạ
cho tam giac mnp vuông tại m (mn>mp) có đường cao mk
a) biết mn=20cm, mp=15cm, tính mk và góc mnp (góc làm tròn đến đơn vị phút).
b) vẽ trung tuyến me của tam giác mnp. từ p vẽ đường thẳng vuông góc với me cắt mn tại d. cm tam giác mnp đồng dạng với tam giác mpd, từ đó suy ra mn.md=np.pk
Câu 5: Thể tích của khối chóp đã cho: V = 1/3.2a2.2a = 4/3.a3. Chọn C.
Câu 6: Thể tích của khối chóp đã cho: V = 1/3.32.2 = 6. Chọn A.
Câu 7: Thể tích của khối chóp S.ABC: V = 1/3.1/2.a2.h = 5a3 ⇒ h = 30a. Chọn B.
Bạn không chụp hết đề nhưng mình đoán là tìm $m$ để hàm số đồng biến trên $\mathbb{R}$
Lời giải:
Để hàm số đồng biến trên $\mathbb{R}$ thì:
$y'=3mx^2-2(2m-1)x+(m-2)\geq 0, \forall x\in\mathbb{R}$
Điều này xảy ra khi:
\(\left\{\begin{matrix} 3m>0\\ \Delta'=(2m-1)^2-3m(m-2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>0\\ (m+1)^2\leq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m>0\\ m=-1\end{matrix}\right.\) (vô lý)
Vậy không tồn tại $m$ để hs đồng biến trên $\mathbb{R}$
Câu 5b)
T = lx - 1l + lx + 2l + lx - 3l + lx + 4l + lx - 5l + lx + 6l + lx - 7l + lx + 8l + lx - 9l
Vì lx - 1l; lx + 2l; lx - 3l; lx + 4l; lx - 5l; lx + 6l; lx - 7l; lx + 8l; lx - 9l luôn \(\ge\)0 với mọi x
\(\Rightarrow\)lx - 1l + lx + 2l + lx - 3l + lx + 4l + lx - 5l + lx + 6l + lx - 7l + lx + 8l + lx - 9l\(\ge\)0 + 0 + 0 + .... + 0 = 0
\(\Rightarrow T\ge0\)với mọi x
\(\Rightarrow Min\)\(T=0\)\(\Leftrightarrow x\in\left\{1;-2;3;-4;5;-6;7;-8;9\right\}\)
Vậy giá trị nhỏ nhất của T = 0 \(khix\in\left\{1;-2;3;-4;5;-6;7;-8;9\right\}\)
5a bạn ơi