Tìm số tự nhiên a là số lón nhất có 3 chữ số thỏa mãn a chia 20 dư 5, chia 4 dư 1 và chia 7 dư 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a:20 dư 5
a:4 dư 1
a:7 dư 6
\(\Rightarrow a+15⋮20,4,7\)
\(\Rightarrow a+15\in BC\left(20;4;7\right)\)
\(20=2^2\cdot5;4=2^2;7=7\)
\(\Rightarrow BCNN\left(20;4;7\right)=2^2\cdot5\cdot7=140\)
\(\Rightarrow BC\left(20;4;7\right)=B\left(140\right)=\left(0;140;280;...\right)\)
\(a+15\in\left(0;140;280;...\right)\)
Mà a là số lớn nhất có 3 chữ số \(\Rightarrow a+15=980\)
\(\Rightarrow a=965\)
Vậy a=965
1.
Gọi số cần tìm là a
theo bài ra ta có: a-7 chia hết 11
a-7 chia hết 13
a-7 chia hết 17 và a là số lớn nhất có 4 chữ số
=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số
BCNN (11,13,17)=2431
(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)
=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)
mà a là số lớn nhất có 4 chữ số
nên a=9731
Vậy số cần tìm là 9731
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.