cho tam giác ABC cân tại A.Trên tia đối BA vá CA lấy 2 điểm D và E sao cho BD=CE.Chứng minh rằng:
a)DE//BC
b)từ D kẻ DM⊥BC,Từ E kẻ EN⊥BC.Chứng minh:DM=EN
c)Chứng minh:ΔAMN là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(1)
Ta có: AD=AB+BD(B nằm giữa A và D)
AE=AC+CE(C nằm giữa A và E)
mà AB=AC(ΔABC cân tại A)
và BD=CE(gt)
nên AD=AE
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔADE cân tại A(cmt)
nên \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{ADE}\)
mà \(\widehat{ABC}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị
nên BC//DE(Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: \(\widehat{DBM}=\widehat{ABC}\)(hai góc đối đỉnh)
\(\widehat{ECN}=\widehat{ACB}\)(hai góc đối đỉnh)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{DBM}=\widehat{ECN}\)
Xét ΔDBM vuông tại M và ΔECN vuông tại N có
BD=CE(gt)
\(\widehat{DBM}=\widehat{ECN}\)(cmt)
Do đó: ΔDBM=ΔECN(cạnh huyền-góc nhọn)
nên DM=EN(hai cạnh tương ứng)
c) Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
BM=CN(ΔDBM=ΔECN)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACN(c-g-c)
nên AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
https://h.vn/hoi-dap/question/168197.html
tham khảo nhé bạn
Bạn tự vẽ hình nha!!!
a.
ABC = MBD (2 góc đối đỉnh)
ACB = NCE (2 góc đối đỉnh)
mà ABC = ACB (tam giác ABC cân tại A)
=> MBD = NCE
Xét tam giác MBD vuông tại M và tam giác NCE vuông tại N có:
MBD = NCE (chứng minh trên)
BD = CE (gt)
=> Tam giác MBD = Tam giác NCE (cạnh huyền - góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b.
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
Xét tam giác ADM và tam giác AEN có:
DM = EN (theo câu a)
MDA = NEA (tam giác MBD = tam giác NCE)
AD = AE (chứng minh trên)
=> Tam giác ADM = Tam giác AEN (c.g.c)
a.
ABC = MBD (2 góc đối đỉnh)
ACB = NCE (2 góc đối đỉnh)
mà ABC = ACB (tam giác ABC cân tại A)
=> MBD = NCE
Xét tam giác MBD vuông tại M và tam giác NCE vuông tại N có:
MBD = NCE (chứng minh trên)
BD = CE (gt)
=> Tam giác MBD = Tam giác NCE (cạnh huyền - góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b.
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
Xét tam giác ADM và tam giác AEN có:
DM = EN (theo câu a)
MDA = NEA (tam giác MBD = tam giác NCE)
AD = AE (chứng minh trên)
=> Tam giác ADM = Tam giác AEN (c.g.c)
a: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{MBD}=\widehat{NCE}\)
Do đó:ΔMBD=ΔNCE
Suy ra: DM=EN
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
\(\widehat{HMB}=\widehat{KNC}\)
Do đó: ΔHBM=ΔKCN
Suy ra: \(\widehat{HBM}=\widehat{KCN}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI là đường trung trực của BC
=>AI⊥BC
=>AI⊥MN