CM
\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\ge2ab\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t nói trước đây là bài làm rất xàm nên đừng tin nhé,spam đấy!
Không mất tính tổng quát giả sử \(c\ge0\)
\(a=c+x+y;b=c+y;c=c\)
Ta cần chứng minh \(A=f\left(x;y;c\right)=\left[\left(c+x+y\right)^2+\left(c+y\right)^2+c^2\right]\left[\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right]\ge\frac{9}{2}\)
\(\ge\frac{\left(3c+x+y\right)}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)=T\left(x;y;c\right)\)
Xét hiệu \(T\left(x;y;c\right)-T\left(x;y;0\right)=c\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge0\)
Nên \(T\left(x;y;c\right)\ge T\left(x;y;0\right)=\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\)
Cần chứng minh \(\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge\frac{9}{2}\)
...
Lời giải:
Áp dụng BĐT Cauchy:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{a^2+b^2}=\frac{a^2+b^2}{a^2b^2}+\frac{4}{a^2+b^2}\geq 2\sqrt{\frac{a^2+b^2}{a^2b^2}.\frac{4}{a^2+b^2}}=\frac{4}{ab}=\frac{32(a^2+b^2)}{8ab(a^2+b^2)}(1)\)
Tiếp tục áp dụng BĐT Cauchy ngược dấu:
\(8ab(a^2+b^2)=4.(2ab).(a^2+b^2)\leq (2ab+a^2+b^2)^2=(a+b)^4(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{a^2+b^2}\geq \frac{32(a^2+b^2)}{8ab(a^2+b^2)}\geq \frac{32(a^2+b^2)}{(a+b)^4}\) (đpcm)
Dấu "=" xảy ra khi $a=b$
a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)
Đẳng thức xảy ra khi \(a=b=c\)
b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=c\)
c) Theo câu b và BĐT Cauchy-Schwarz:
\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(a=b=c\)
\(\left(\frac{a+b}{2-a-b}\right)^2\ge\frac{ab}{\left(1-a\right)\left(1-b\right)}\)
\(\Leftrightarrow\left(\frac{a+b}{2-a-b}\right)^2-\frac{ab}{\left(1-a\right)\left(1-b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a^2+2ab+b^2\right)\left(a-1\right)\left(b-1\right)-ab\left(a+b-2\right)^2}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)
\(\Leftrightarrow\frac{-a^3-b^3+a^2+b^2+a^2b+ab^2-2ab}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)
\(\Leftrightarrow\frac{-\left(a-b\right)^2\left(a+b-1\right)}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)
BĐT cuối luôn đúng vì \(a;b\in\)\((0;\frac{1}{2}]\)
Sủa đề : Cho \(a;b\ge1\) , cmr : \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Biến đổi tương đương ta có :
\(bdt\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab-2a^2b^2-2a^2-2b^2-2\ge0\)
\(\Leftrightarrow-a^2-b^2+a^3b+ab^3+2ab-2a^2b^2\ge0\)
\(\Leftrightarrow\left(-a^2-b^2+2ab\right)+\left(a^3b+ab^3-2a^2b^2\right)\ge0\)
\(\Leftrightarrow-\left(a-b\right)^2+ab\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\)(luôn đúng \(\forall a;b\ge1\))
Vậy bđt đã được chứng minh
Áp dụng bđt Cauchy-Schwarz:
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Áp dụng BĐT Cauchy - schwarz dạng Engel:
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{\left(a+b\right)^2}{2}\)
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\frac{\left(a+b\right)^2}{2}\ge2ab\)
Vậy \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\ge2ab\)
Áp dụng bđt bunhiacopxki ta có:
\(\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{\left(a+b\right)^2}{2}\)(1)
Ta có:\(\frac{\left(a+b\right)^2}{2}\ge2ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+b^2\ge0\)(luôn đúng vì:\(a^2\ge0,b^2\ge0\forall a,b\inℝ\))
\(\frac{\Rightarrow\left(a+b\right)^2}{2}\ge2ab\)(2)
Từ (1) và (2) suy ra đề bài cần chứng minh