Cho 2 đa thức P(x)=\(26x^{2017}-3x^{1931}+86\) và Q(x)=\(x^2-1\)
Tìm dư trong phép chia P(x):Q(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
\(P=\left(x-1\right)\left(x+2\right)\left(x+4\right)\left(x+7\right)+2069\)
\(=\left(x-1\right)\left(x+7\right)\left(x+2\right)\left(x+4\right)+2069\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+8\right)+2069\)
\(=\left(x^2+6x+2-9\right)\left(x^2+6x+2+6\right)+2069\)
Mà \(x^2+6x+2=Q\)
\(=>P=\left(Q-9\right)\left(Q+6\right)+2069=Q^2-3Q-54+2069\)
\(=Q^2-3Q+2015=Q\left(Q-3\right)+2015\)
Dễ thấy \(Q\left(Q-3\right)=BS\left(Q\right)\)
\(=>P\)chia Q có số dư là 2015
Vậy................
Hệ số bất định đi bn ey