K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

1/

n=2 ta thấy đúng

GS đúng với n=k tức là (1-x)k+(1+x)k<2k

Ta cm đúng với n=k+1

(1-x)k+1+(1+x)k+1< (1-x)k+(1+x)k+(1-x)(1+x)k+(1-x)k(1+x)= 2\(\left(\left(1-x\right)^k+\left(1+x\right)^k\right)\)\(< 2.2^k=2^{k+1}\)

=> giả sử là đúng

theo nguyên lí quy nạp ta có đpcm

27 tháng 10 2017

câu 2 đi thánh <(") câu 1 t làm ra rồi 

11 tháng 2 2019

Số số hạng của tổng trên là:

[ 2n - (n+1) ] :1 +1 = n số hạng

Ta có

n+1 ; n +2 ; n +3 ; ... ; 2n -1 \(\le\) 2n

\(\Rightarrow\dfrac{1}{n+1};\dfrac{1}{n+2};\dfrac{1}{n+3};...;\dfrac{1}{2n-1}\ge\dfrac{1}{2n}\)

\(\Rightarrow\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+...+\dfrac{1}{2n}\ge\dfrac{1}{2n}+\dfrac{1}{2n}+\dfrac{1}{2n}+...+\dfrac{1}{2n}\)

(n phân số \(\dfrac{1}{2n}\))

= \(\dfrac{1}{2}\)

Vậy \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+...+\dfrac{1}{2n}\ge\dfrac{1}{2}\)

21 tháng 9 2018

a/ \(\frac{1}{n\left(n-1\right)\left(n+1\right)}=\frac{1}{n^3-n}>\frac{1}{n^3}\)

b/ \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n^3+3n^2+2n}< \frac{1}{n^3}\)

c/ Ap dụng câu b ta được

\(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2006^3}>\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2006.2007.2008}\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2006.2007}-\frac{1}{2007.2008}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{2007.2008}\right)>\frac{1}{12}>\frac{1}{15}\)