K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

a  tìm số nguyên x biết (x-5).(y-7)=1 
   (x-5).(y-7)=1 = 1.1 = -1.(-1) 
   TH1,
   x-5 = 1, y-7 = 1
   => x = 6, y = 8
   TH2

  x -5 = -1, y - 7 = -1
=> x = 4, y = 6

 

7 tháng 12 2015

1,x/7=y/3 va x-24=y

=>x/7=y/3 va x-y=24

adtcdts=n: 

x/7=y/3=x-y/7-3=24/4=6

Suy ra :x/7=6=>x=6.742

y/3=6=>y=3.6=18

2,Adtcdts=n:

x/5=y/7=z/2=y-x/7-5=48/2=24

suy ra : x/5=24=>x=120

y/7=24=>y=168

z/2=24=>z=48

Bài 9:

Ta có: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{-t}{-9}\)

\(\Leftrightarrow\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{-z}{17}=\dfrac{t}{9}=-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\\\dfrac{-y}{3}=-2\\\dfrac{-z}{17}=-2\\\dfrac{t}{9}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\-y=-6\\-z=-34\\t=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=6\\z=34\\t=-18\end{matrix}\right.\)

Vậy: (x,y,z,t)=(-10;6;34;-18)

Bài 11:

Ta có: \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}\)

\(\Leftrightarrow\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}=\dfrac{-7}{6}\)

Ta có: \(\dfrac{x}{18}=\dfrac{-7}{6}\)

\(\Leftrightarrow x=\dfrac{18\cdot\left(-7\right)}{6}=-21\)

Ta có: \(\dfrac{-98}{y}=\dfrac{-7}{6}\)

\(\Leftrightarrow y=\dfrac{-98\cdot6}{-7}=84\)

Ta có: \(\dfrac{-14}{z}=\dfrac{-7}{6}\)

\(\Leftrightarrow z=\dfrac{-14\cdot6}{-7}=12\)

Ta có: \(\dfrac{u}{-78}=\dfrac{-7}{6}\)

\(\Leftrightarrow u=\dfrac{-78\cdot\left(-7\right)}{6}=\dfrac{78\cdot7}{6}=91\)

Ta có: \(\dfrac{t}{102}=\dfrac{-7}{6}\)

\(\Leftrightarrow t=\dfrac{-7\cdot102}{6}=-7\cdot17=-119\)

Vậy: (x,y,z,t,u)=(-21;84;12;-119;91)

16 tháng 2 2021

Nguyễn Lê Phước Thịnh giải giùm mk bài 10 đc ko ạ

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

2 tháng 10 2018

ta có x/6=7/9

=> x=6.7/9=14/3

thay x vào ta được 14/3=z/2

=> z=2.14/3=28/3

mà x+y+z=27

=> y=27-x-z=13