giải hệ pt
\(\hept{\begin{cases}x^2+y^2=1\\x^3+y^3=1\end{cases}}\)
júp vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)
Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)
Th2: \(x,y\ne1\)
\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)
Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0
Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)
Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4
Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)
b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)
Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)
* Th1: \(x^2+2y^2=0\)(*)
Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ
* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé
\(\hept{\begin{cases}x^2+y^2+xy=1\left(1\right)\\x^3+y^3=x+y\left(2\right)\end{cases}}\)
Ta có: x3 + y3 = x + y
<=> (x + y)(x2 - xy + y2) - (x + y) = 0
<=> (x + y)(x2 - xy + y2 - 1) = 0
<=> x + y = 0 hay x2 - xy + y2 - 1 = 0
* x + y = 0 => x = -y
Thế vào pt (1), ta có 2y2 - y2 = 1 <=> y2 = 1 <=> y = 1 hay y = -1
@ y = 1 => x = -1
@ y = -1 => x = 1
* x2 - xy + y2 - 1 = 0 => x2 - xy + y2 = 1 (3)
Lấy (1) - (3) vế theo vế, ta có: 2xy = 0 <=> x = 0 hay y = 0
@ x = 0 => y2 = 1 <=> y = 1 hay y = -1
@ y = 0 => x2 = 1 <=> x = 1 hay x = -1
Vậy nghiệm (x; y) = (-1, 1) ; (1; -1) ; (0; 1) ; (0; -1) ; (1; 0) ; (-1; 0)
a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)
b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
Ta có:
\(\hept{\begin{cases}|x+1|+|y+1|=5\left(1\right)\\|x+1|=4y-4\left(2\right)\end{cases}}\)
Thay (2) vào (1):
\(4y-4+|y-1|=5\left(3\right)\)
+Nếu \(y\ge-1\Rightarrow4y-4+y+1=5\Rightarrow5y=8\Rightarrow y=\frac{8}{5}\left(TM\right)\)
Thay y = 8/5 vào (2) ta có:
\(|x+1|=4.\frac{8}{5}-4\)
\(\Leftrightarrow|x+1|=\frac{12}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{12}{5}\\x+1=\frac{-12}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{5}\\x=-\frac{17}{5}\end{cases}}\)
+Nếu \(y\le-1\Rightarrow4y-4-y-1=5\Rightarrow3y=10\Rightarrow y=\frac{10}{3}\left(L\right)\)
Hệ \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=1\\\left(x+y\right)\left(x^2+y^2-xy\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x+y\right)^2-2xy=1\\\left(x+y\right)\left(1-xy\right)=1\end{cases}.}\)
Đặt x+y=a,xy=b
Hệ tương đương với \(\hept{\begin{cases}a^2-2b=1\\a\left(1-b\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}b=\frac{a^2-1}{2}\\a\left(1-\frac{a^2-1}{2}\right)=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{a^2-1}{2}\\a^3-3a+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{a^2-1}{2}\\\left(a-1\right)^2\left(a+2\right)=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=0\end{cases}\left(1\right)hoac\hept{\begin{cases}a=-2\\b=\frac{3}{2}\end{cases}\left(2\right)}}\)
Giải (1)
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\Rightarrow y=1\\x=1\Rightarrow y=0\end{cases}}}\)
Giải (2)
\(\left(2\right)\Leftrightarrow\hept{\begin{cases}x+y=-2\\xy=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=-2-x\\2x\left(-2-x\right)=3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-2-x\\2x^2+4x+3=0\end{cases}}\)(vô nghiệm)
Vậy.............