Tìm GTLN của biểu thức
H=(3x-2y)\(^2\)-(4y-6x)\(^2\)-\(|\)xy-24\(|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(\left(3x-2y\right)^2\)> 0
\(\left(4y-6x\right)^2\)> 0
\(\left|xy-24\right|\)> 0
dấu "=" xảy ra (=)
\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\left(=\right)\hept{\begin{cases}3x-2y=0\\4y-6x=0\\xy-24=0\end{cases}}\)\(\)còn lại mk chưa tính ra
bạn ơi nếu làm thế này là sai đó,các biến ở các hạnh tử giống nhau mà
https://olm.vn/hoi-dap/detail/246389739228.html
bạn vào cái này vì mk đã từng làm cho 1 bạn
Bạn vào link này để tham khảo nha :
https://olm.vn/hoi-dap/detail/246389739228
Học Tốt @
M = ( 3x - 2y )2 - ( 4y - 6x )2 - | xy - 24 |
= 9x2 - 12xy + 4y2 - ( 16y2 - 48xy + 36x2 ) - | xy - 24 |
= 9x2 - 12xy + 4y2 - 16y2 + 48xy - 36x2 - | xy - 24 |
= -27x2 + 36xy - 12y2 - | xy - 24 |
= -3( 9x2 - 12xy + 4y2 ) - | xy - 24 |
= -3( 3x - 2y )2 - | xy - 24 |
Ta có : \(\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\forall x,y\\-\left|xy-24\right|\le0\forall x,y\end{cases}}\Rightarrow-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x-2y=0\left(1\right)\\xy-24=0\left(2\right)\end{cases}}\)
Từ (1) => 3x = 2y => x = 2/3y
Thế x = 2/3y vào (2) ta được :
(2) <=> 2/3y2 = 24
<=> y2 = 36
<=> y = ±6
Với y = 6 => x = 4
Với y = -6 => x = -4
Vậy giá trị lớn nhất của M là 0, đạt được khi \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-4\\y=-6\end{cases}}\)
\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)
\(H=\left(3x-2y\right)^2-\left(-2\right)^2.\left(3x-2y\right)^2-\left|xy-24\right|\)
\(H=\left(3x-2y\right)^2-4\left(2x-2y\right)^2-\left|xy-24\right|\)
\(H=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)
Vì \(\hept{\begin{cases}\left(3x-2y\right)^2\ge0\forall x,y\\\left|xy-24\right|\ge0\forall x,y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\\-\left|xy-24\right|\le0\end{cases}}\)
\(\Leftrightarrow H=-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)
\(\Leftrightarrow H\le0\forall x,y\)
Dấu " = " xảy ra khi và chỉ
\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left|xy-24\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}3x=2y\\xy=24\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2y}{3}\\\frac{2y}{3}.y=24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{2y}{3}\\y^2=36\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=6\Leftrightarrow x=4\\y=-6\Leftrightarrow x=-4\end{cases}}\)
Vậy \(Max_H=0\Leftrightarrow\left(x;y\right)\in\left\{\left(4;6\right);\left(-4;-6\right)\right\}\)
Bạn tham khảo !!!
\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)
\(H=\left(3x-2y\right)^2-\left(-2\right)^2.\left(3x-2y\right)^2-\left|xy-24\right|\)
\(H=\left(3x-2y\right)^2-4\left(3x-2y\right)^2-\left|xy-24\right|\)
\(H=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)
\(\text{Vì }\hept{\begin{cases}\left(3x-2y\right)^2\ge0\forall x,y\\\left|xy-24\right|\ge0\forall x,y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\\-\left|xy-24\right|\le0\end{cases}}\)
\(\Rightarrow H=-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)
\(\Rightarrow H\le0\forall x,y\)
\(\text{Dấu "=" xảy ra khi và chỉ khi }\)
\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left|xy-24\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\xy=24\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2y}{3}\\\frac{2y}{3}.y=24\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{2y}{3}\\y^2=36\end{cases}\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm6\end{cases}}}\)
\(\text{Vậy Hmax = 0 xảy ra khi (x;y) }\in\left\{\left(4;6\right);\left(-4;6\right);\left(4;-6\right);\left(-4;-6\right)\right\}\)
Học tốt
Nguyễn Ngọc Lộc ?Amanda?Trần Quốc KhanhNguyễn Lê Phước ThịnhAkai HarumaPhạm Lan HươngHoàng Thị Ánh Phương Phạm Thị Diệu HuyềnVũ Minh TuấnTrên con đường thành công không có dấu chân của kẻ lười biếng
\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)
\(=\left(3x-2y\right)^2-4\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3\left[\left(3x-2y\right)^2+\left|xy-24\right|\right]\le0\)
Dấu "=" khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-4\\y=-6\end{cases}}\)
\(H=\left(3x-2y\right)^2-\left(4x-6x\right)^2-\left|xy-24\right|\)
\(=\left(3x-2y\right)^2-4.\left(3x+2y\right)^2-\left|xy-24\right|\)
\(=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3.\left[\left(3x-2y\right)^2+\left|xy-24\right|\right]\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}=>\hept{\begin{cases}x=4\\y=6\end{cases}or\hept{\begin{cases}x=-4\\x=-6\end{cases}}}}\)