Cho tam giác ABC nhọn có AB < AC. Vẽ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB.
a) CM: BD = DE.
b) Đường thẳng DE và AB cắt nhau tại F. CM: tam giác DBF = DEC.
c) Qua C kẻ tia Cx song song với AB và cắt tia AD tại K. Gọi I là giao điểm của AK và CF. CM: I là trung điểm của AK.
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)
k cho mk na