K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

Bài 1 : 

Vì \(a,b,c\)là độ dài các cạnh của tam giác (gt)

\(\Rightarrow\hept{\begin{cases}c< a+b\\a< b+c\\b< c+a\end{cases}}\) ( theo bất đẳng thức trong tam giác )

Ta có công thức : \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right)\)

\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\)

\(\frac{b}{c+a}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\)

Cộng theo vế (1) , (2) và (3) ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(đpcm\right)\)

Bài 2 , để chiều nhé bạn

2 tháng 2 2020

Bài 3 : 

Cách 1 : 

\(\left|x-1004\right|-\left|x+1003\right|\)

+ ) Xét \(x< -1003\)suy ra 

\(\hept{\begin{cases}x+1003< 0\Rightarrow\left|x+1003\right|=-\left(x+1003\right)=-x-1003\\x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(-x-1003\right)=2007\)

+ ) Xét \(-1003\le x< 1004\). Suy ra 

\(\hept{\begin{cases}x\ge1003\Rightarrow x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\\x< 1004\Rightarrow x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(x+1003\right)=1-2x\)

+ ) Xét \(x\ge1004\). Suy ra 

\(\hept{\begin{cases}x-1004\ge0\Rightarrow\left|x-1004\right|=x-1004\\x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\end{cases}}\)

Khi đó : \(A=\left(x-1004\right)-\left(x+1003\right)=-2007\)

Ta thấy với \(x< -1003\)thì A đạt giá trị lớn nhất là 2007 

Vậy \(A_{max}=2007\)khi \(x< -1003\)

16 tháng 10 2016

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

16 tháng 10 2016

Bài 5:

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b = c

26 tháng 4 2019

Bài 1 :

a ) Vì tam giác ABC có chu vi bằng 24 

=> AB + AC + BC = 24

hay a + b + c = 24

Vì 3 cạnh của tam giác ABC tỉ lệ với 3,4,5 

=> a/3 = b/4 = c/5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

a/3 = b/4 = c/5 = ( a + b + c ) / ( 3 + 4 + 5 ) = 24/12 = 2

=> a = 6 ; b = 8 ; c = 10

b ) Vì a = 6 => a2 = 36

          b = 8 => b2 = 64

          c = 10 => c2 = 100

MÀ 100 = 36 + 64 hay c= a2 + b2

Xét tam giác ABC có  c= a2 + b2 ( cmt )

=> tam giác ABC là tam giác vuông ( định lí đảo định lí pytago )

Vậy ...

26 tháng 4 2019

Bài 2 :

Đặt a/b = c/d = t ( t khác 0 ) => a = bt ; c = dt

Khi đó :

\(\frac{5a+5b}{5b}=\frac{5bt+5b}{5b}=\frac{5b\left(t+1\right)}{5b}=t+1\)( 1 )

\(\frac{c^2+cd}{cd}=\frac{\left(dt\right)^2+dtd}{dtd}=\frac{d^2t^2+d^2t}{d^2t}=t+1\)( 2 )

Từ ( 1 ) và ( 2 ) ta có dpcm

b ) ( chứng minh tương tự )

9 tháng 11 2016

1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm

3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)

=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2

4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)

9 tháng 11 2016

câu 3,4 bạn làm tỉ lệ thức là xong

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)

2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.

3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.

4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^0\). Tính độ dài AD.

5. Tìm các số a,b sao cho 2007ab là bình phương của số tự nhiên.

6. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AH và BH. Chứng minh rằng \(CM\perp AN\)

7. Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)

8. Cho tam giác ABC, H là trực tâm, O là tâm đường tròn đi qua ba đỉnh của tam giác. Chứng minh rằng khoảng cách từ O đến một cạnh của tam giác bằng một nửa khoảng cách từ H đến đỉnh đối diện.

9. Tìm x,y,z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

10. Độ dài ba cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào?

2
11 tháng 4 2018

Bài 7 : 

( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt ) 

Ta có : 

\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\)

Vậy \(A>10\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.

18 tháng 1 2020

Vì a, b, c là độ dài các cạnh của tam giác (gt).

\(\Rightarrow\left\{{}\begin{matrix}c< a+b\\a< b+c\\b< a+c\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).

Ta có công thức: \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right).\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\\\frac{b}{a+c}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\\\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\end{matrix}\right.\)

Cộng theo vế (1), (2) và (3) ta được:

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2.\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\left(đpcm\right).\)

Chúc bạn học tốt!

18 tháng 1 2020

Violympic toán 7

14 tháng 4 2017

Vì a,b,c là 3 cạnh của một tam giác nên ta có:

a>0 \(\Rightarrow\)a<b+c \(\Rightarrow\)a+a<a+b+c\(\Rightarrow\)2a<a+b+c (1)

b>0 \(\Rightarrow\)b<c+a \(\Rightarrow\)b+b<a+b+c\(\Rightarrow\)2b<a+b+c (2)

c>0 \(\Rightarrow\)c<a+b \(\Rightarrow\)c+c<a+b+c\(\Rightarrow\)2c<a+b+c (3)

Từ (1);(2);(3) \(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

14 tháng 4 2017

\(\frac{a}{b+c}\)+\(\frac{b}{c+a}\)\(\frac{c}{a+b}\)

=\(\frac{a}{b}\)+\(\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\)

=\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)

Vì hai p/s nghịch đảo luôn lớn hơn hoặc bằng 2(lên lớp 8 sẽ có công thức)

nên nó phải luôn lớn hơn hoặc bằng 2