tìm a biết khi a chia cho 2020 thì dư 19, chia cho 2021 thì dư 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý Fermat nhỏ thì:
$2020^6\equiv 1\pmod 7$
$\Rightarrow (2020^6)^{336}.2020^4\equiv 1^{336}.2020^4\equiv 2020^4\pmod 7$
Có:
$2020\equiv 4\pmod 7$
$\Rightarrow 2020^4\equiv 4^4\equiv 256\equiv 4\pmod 7$
$\Rightarrow A\equiv 2020^4\equiv 4\pmod 7$
Vậy $A$ chia $7$ dư $4$
Ta có: a + 19 chia hết cho 21 và 15
=> a + 19 thuộc BC(21; 15)
=> a + 19 thuộc {84; 168;...}
=> a thuộc {65; 149; ...}
Vì a nhỏ nhất => a = 65
Gọi số cần tìm là a.
Do a:17 dư 5 và a:19 dư 2
=> a=17m+5
Và a=19n+2 (Với m, n lần lượt là thương của 2 phép chia a:17 và a:19)
=> 17m+5=19n+2 <=> 19n=17m+3 => \(n=\frac{17m+3}{19}\)
Do n thuộc N => 17m+3 phải chia hết cho 19 => 17m+3 phải chia hết cho 19 (Và m thuộc N)
Ta chọn được duy nhất m=11 => n=10
Vậy số cần tìm là: a=17m+5=17.11+5=192
Đáp số: 192
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
ủa 6a1 is real, tớ thấy đây đâu phải câu hỏi linh tinh đâu.