tìm a biết a chia cho 2020 thì dư 9, chia cho 2021 thì dư 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 561 chia a dư 21 => 561 - 21 chia hết cho a => 540 chia hết cho a.
693 chia a dư 9 => 693 - 9 chia hết cho a => 684 chia hết cho a.
=> a thuộc ƯC(540, 684)
Ta có :
540 = 22 . 33 . 5
684 = 22 . 32 . 19
=> ƯCLN(540, 684) = 22 . 32 = 36
=> ƯC(540, 684) = Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}.
Vì số chia luôn lớn hơn số dư nên a = 36.
Vậy a = 36.
=))
Lời giải:
Áp dụng định lý Fermat nhỏ thì:
$2020^6\equiv 1\pmod 7$
$\Rightarrow (2020^6)^{336}.2020^4\equiv 1^{336}.2020^4\equiv 2020^4\pmod 7$
Có:
$2020\equiv 4\pmod 7$
$\Rightarrow 2020^4\equiv 4^4\equiv 256\equiv 4\pmod 7$
$\Rightarrow A\equiv 2020^4\equiv 4\pmod 7$
Vậy $A$ chia $7$ dư $4$
Ta có: a + 19 chia hết cho 21 và 15
=> a + 19 thuộc BC(21; 15)
=> a + 19 thuộc {84; 168;...}
=> a thuộc {65; 149; ...}
Vì a nhỏ nhất => a = 65
Gọi x và y lần lượt là thương của các phép chia a cho 4 và chia a cho 9. (b,c là số tự nhiên)
Ta có: a = 4x + 3 => 27a = 108x + 81 (1)
a = 9y + 5 => 28a = 252y + 140 (2) (Cùng nhân với 28)
Lấy (2) trừ (1) ta được: 28a - 27a = 36.(7c - 3b) + 59
\(\Leftrightarrow\) a = 36. (7c - 3b + 1) + 23
Vậy a chia cho 36 dư 23.
- Ta có : a chia 4 dư 3 `=> a=4k+3 (k in NN)`
- Ta lại có : a chia 9 dư 5 `=> a-5vdots9`
`=> 4k+3-5vdots9`
`=> 4k-2vdots9`
`=> 4k-2-18 vdots9`
`=> 4k-20vdots9`
`=> 4(k-5)vdots9`
mà (4;5)=1
`=> k-5vdots9`
`=> k-5=9m (m in NN)`
`=> k=9m+5`
- Thay `k=9m+5` vào biểu thức `a=4k+3` ta có :
`a=4.(9m+5)+3`
`-> a=36m+20+3`
`-> a=36m+23`
- Vậy a chia 36 dư 23
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
Bài 1:
Gọi số tự nhiên cần tìm là a ( a∈ N; a < = 1200)
Vì a chia cho 20, 25, 30 đều dư 15 nên a - 15 ⋮ 20, 25, 30 → a - 15 ∈BC(20,25,30)
Ta có : BCNN(20, 25, 30) = 22.52.3=300
→ a - 15 = {300, 600, 900, 1200 , ...}
→ a = {315, 615, 915, 1215, ... }
Mà theo đề bài thì a <= 1200 và a ⋮ 41 nên a = 915
Vậy số tự nhiên cần tìm là 915.
Bài 2 Thầy đang nghĩ cách giải Đạt nhé