Cho:\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}\), Tìm x để \(A^2+A\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-9=(cănx-3)(cănx+3)
x+cănx-6=(cănx-2)(cănx+3)=-(2-cănx)(cănx+3)
x-3cănx=x(căn-3)
tự quy đồng rút gọn nha
A\(A\le0< =>\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\le0\)
\(< =>\sqrt{x}-1\le0\left(do\sqrt{x}+4\ge0\right)\)
\(< =>\sqrt{x}\le1< =>x\le1\)
Ta có: \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\) (ĐKXĐ: \(x\ge0\))
Để \(A\le0\Rightarrow A=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow x\le1\)
Vậy \(x\le1\) thì \(A\le0\)
ĐKXĐ: \(x\ge0;x\ne1\)
\(A=\left(\frac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{2x+2+2\sqrt{x}}{x+1}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\frac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\left(x+\sqrt{x}+1\right)}{x+1}\right)\)
\(=\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(x+1\right)}{2\left(x+\sqrt{x}+1\right)}=\frac{1-\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}\)
\(A\le0\Leftrightarrow\frac{1-\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}\le0\)
\(\Leftrightarrow1-\sqrt{x}\le0\) (do \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\))
\(\Leftrightarrow x\ge1\)
Kết hợp ĐKXĐ ta được \(x>1\)
ĐKXĐ: \(x\ge0\)
a/ Để \(\left|A\right|=A\) thì \(A\ge0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}\ge0\)
\(\Leftrightarrow\sqrt{x}-1\ge0\Leftrightarrow\sqrt{x}\ge1\Leftrightarrow x\ge1\)
b/ \(A^2+A\le0\Leftrightarrow A\left(A+1\right)\le0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(\frac{\sqrt{x}-1+\sqrt{x}+1}{\sqrt{x}+1}\right)\le0\)
\(\Leftrightarrow\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}\le0\)\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-1\right)\le0\)
\(\Leftrightarrow\sqrt{x}-1\le0\Leftrightarrow\sqrt{x}\le1\Leftrightarrow x\le1\)
Kết hợp với điều kiện suy ra \(A^2+A\le0\Leftrightarrow\)\(0\le x\le1\)
\(ĐKXĐ:x\ge0\)
Ta có: \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}=\frac{x-1}{x+2\sqrt{x}+1}\)
\(\Rightarrow A^2=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}=\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}\)
\(\Rightarrow A^2+A=\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}+\frac{x-1}{x+2\sqrt{x}+1}\)
\(=\frac{2x-2\sqrt{x}}{x+2\sqrt{x}+1}=\frac{2\left(x-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)^2}\)
\(A\le0\Leftrightarrow\orbr{\begin{cases}A=0\\A< 0\end{cases}}\)
+) A = 0\(\Leftrightarrow2\left(x-\sqrt{x}\right)=0\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\left(tm\right)\)
+) A < 0 \(\Leftrightarrow2\left(x-\sqrt{x}\right)< 0\)(vì \(\left(\sqrt{x}+1\right)^2>0\forall x\ge0\)
\(\Leftrightarrow x-\sqrt{x}< 0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}\\\sqrt{x}-1\end{cases}}\)trái dấu
Mà \(\sqrt{x}>\sqrt{x}-1\Rightarrow\hept{\begin{cases}\sqrt{x}>0\\\sqrt{x}< 1\end{cases}}\Leftrightarrow0< x< 1\)
Vậy 0 < x < 1 thì \(A^2+A\le0\)
Sửa)):
\(0\le x\le1\)nha. Ghi nhầm dấu ở kết luận
Do 2 th là \(\hept{\begin{cases}x=0;x=1\\0< x< 1\end{cases}}\Rightarrow\)\(0\le x\le1\)