Chứng minh rằng nếu (a-b-c)+(-a+b-c)=-(a-b+c) thì a=b+c Nhanh nhé mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
=> \(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)
Nhân cả hai vế với \(\frac{1}{b-c}\)
=> \(\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Tương tự: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ba}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Cộng vế với vế ta có:
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)
\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Vậy ta có điều phải chứng minh.
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow ac+bc-ad-db=ac-bc+ad-db\)
\(\Leftrightarrow ac-ac+bc+bc=ad+ad+db-db\)
\(\Leftrightarrow2bc=2ad\Leftrightarrow bc=ad\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(đfcm)
Vì a+b/a-b=c+d/c-d => a+b/c+d=a-b/c-d
Dựa vào tính chất của dãy tỉ số bằng nhau ta có: a+b/c+d=a-b/c-d=a+b+(a-b)/c+d+(c-d)=a+b+a-b/c+d+c-d=2a/2c=a/c (1)
a+b/c+d=a-b/c-d=a+b-(a-b)/c+d-(c-d)=a+b-a+b/c+d-c+d=2b/2d=b/d (2)
Từ (1),(2)suy ra: a/c=b/d
Em kiểm tra lại đề bài nhé! Tham khảo link:
Câu hỏi của Phan Thúy Vy - Toán lớp 7 - Học toán với OnlineMath
Ta có : ( a - b - c ) + ( - a + b - c ) = - ( a - b + c )
<=> a - b - c - a + b + c = - ( a - b + c )
<=> -2c = - ( a - b + c )
<=> -2c - ( -a + b + c ) = 0
<=> -2c + a + b +c = 0
<=> a - b - c = 0
<=> a - ( b + c ) = 0
<=> a = b + c => đpcm
Vậy ....
Hok tốt
# owe
Cảm ơn bạn nhìu