tìm GTNN của (x+1)/(y)+1/(x-y),với x>y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=\sqrt{10}sin^2a\); \(y=\sqrt{10}cos^2a\)
(Lúc đó: \(x+y=\sqrt{10}\left(sin^2a+cos^2a\right)=\sqrt{10}\))
Lúc đó: \(K=\left(1+100sin^8a\right)\left(1+100cos^8a\right)\)
\(=10^4sin^8acos^8a+200sin^4acos^4a-400sin^2acos^2a+101\)
Đặt \(sin^2acos^2a=l\)
\(\Rightarrow K=f\left(l\right)=10^4l^4+200l^2-400l+101\)
\(\Rightarrow K_{min}=f\left(\frac{1}{5}\right)=45\)
A-2=\(\left(\sqrt{x-y}-\sqrt{\frac{2}{x-y}}\right)^2+2\sqrt{2}\)
A>=2\(\left(1+\sqrt{2}\right)\)
dang thuc xay ra khi
x-y=\(\sqrt{2}\)
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)