cho phương trình \(x^3+\text{a}x^2-\text{a}x-4=0\) (1) (a-tham số)
a) biết phương trình có một nghiệm la x=-2, hay xac định gia trị của a
b) Với a tìm được ở cau a, hay tìm những nghiệm còn lai của phương trình.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: Phương trình nhận nghiệm \(x=0\) nên:
\(\left(3.0+2m-5\right)\left(0-2m-1\right)=0\)
\(\Leftrightarrow\left(2m-5\right)\left(-2m-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2m-5=0\\-2m-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-\frac{1}{2}\end{cases}}\)
Vậy \(m=\left\{\frac{5}{2};-\frac{1}{2}\right\}\) là giá trị cần tìm.
b, + Với \(m=\frac{5}{2}\) phương trình đã cho trở thành:
\(\left(3x\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
+ Với \(m=-\frac{1}{2}\) phương trình đã cho trở thành:
\(\left(3x-6\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy với \(m=\frac{5}{2}\) phương trình có \(n_0S=\left\{0;6\right\}\)
\(m=-\frac{1}{2}\) phương trình có \(n_0S=\left\{0;2\right\}\)
a) Phương trình có nghiệm bằng 1 khi \(1+a-4-4=0\)
\(\Rightarrow a=7\)
b) Khi a = 7 thì phương trình trở thành \(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow-x^3-7x^2+4x+4=0\)
\(\Leftrightarrow\left(-x^3-8x^2-4x\right)+\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow-x\left(x^2+8x+4\right)+\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(x^2+8x+4\right)=0\)
+) 1 - x = 0 thì x = 1
+) \(x^2+8x+4=0\)
\(\Leftrightarrow x^2+8x+16-12=0\Leftrightarrow\left(x+4\right)^2=12\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=\sqrt{12}\\x+4=-\sqrt{12}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{12}-4\\x=-\sqrt{12}-4\end{cases}}\)
Vậy phương trình có 3 nghiệm \(\left\{1;\pm\sqrt{12}-4\right\}\)
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
a: Thay x=-2 vào pt,ta được:
-8+4a+8-4=0
=>4a-4=0
hay a=1
b: Pt sẽ là \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
=>(x+1)(x-2)(x+2)=0
hay \(x\in\left\{-1;2;-2\right\}\)
a ) Thay x = - 2 vào phương trình x3 + ax2 - ax - 4 = 0, ta được :
( - 2 )3 + a . ( - 2 )2 - a . ( - 2 ) - 4 = 0
\(\Rightarrow\)a = 2
b ) Chưa hiểu đề cho lắm .